Characteristics of strike-slip faults and exploration of fault-dissolution body in Xiaotangnan area of Tarim Basin
-
摘要:
断裂在塔里木盆地奥陶系碳酸盐缝洞型油气藏勘探开发中具有重要作用,包括控储、控藏和控富,是油气地质分析的热点。由于肖塘南地区二维测线对断裂的解释及识别难度大,对断裂控储控藏的认识不清,制约了该区奥陶系油气勘探。为此,基于肖塘南地区新三维地震资料,在分析区域地质概况的基础上,系统分析了走滑断裂的构造、演化特征,明确了走滑断裂对油气藏的控制作用,进而提出了目标优选思路。研究表明,平面上肖塘南地区发育3条NE向走滑断裂带,具有线状、马尾状、半花状组合样式;纵向上发育深层、浅层2套断裂系统,深层走滑断裂形成于加里东早—中期,表现为陡直或花状样式,浅层断裂形成于加里东晚期—海西期,表现为负花状构造走滑断裂。研究区内顺南4断裂带具有明显的分区特征,由南向北表现为线性断裂区——马尾状断裂区。在马尾状断裂区内,地层破碎严重,有利于岩溶作用,断溶体油气藏更为发育,是风险勘探优先选择的区域。研究认识对该区奥陶系断溶体油气藏勘探具有一定的指导意义。
Abstract:Faults play an important role in the exploration and development of Ordovician carbonate fracture-cavity hydrocarbon reservoirs in Tarim Basin, including controlling reservoirs development and hydrocarbon accumulation.The structure and evolution characteristics of strike-slip faults are analyzed based on the new 3D seismic data in Xiaotangnan area. The results show that there are three NE strike-slip faultsand they have linear, horse-tailed, braided and half-flowered combinations in the Xiaotangnan area.Two sets of deep and shallow fault systems were developed longitudinally. The deep strike-slip faults were formed in the Early to Middle Caledonian, showing steep or flower-shaped pattern, while the shallow faults were formed in the Late Caledonian to Hercynian, showing negative flower-shaped strike-slip faults. The Shunnan 4 extension fault zone in the study area has obvious zoning characteristics, which shows a linear fault zone, horsetail fault zone from south to north.In the cavern fault area, the strata are seriously broken, which is conducive to karstic process, and the fault solution reservoir is more developed, so it is the preferred area for risk exploration.This study has certain guiding significance for the exploration of Ordovician fault-solution reservoirs in this area.
-
Key words:
- strike-slip faults /
- fault-dissolution body /
- hydrocarbon reservoirs /
- Tarim Basin
-
-
[1] 邬光辉, 成丽芳, 刘玉魁, 等. 塔里木盆地寒武系-奥陶系走滑断裂系统特征及其控油作用[J]. 新疆石油地质, 2011, 32(3): 239-243. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201103008.htmWu G H, Cheng L F, Liu Y K, et al. Strike-slip fault system of the Cambrian-Ordovician and its oil-controlling effect in Tarim basin[J]. Xinjiang Petroleum Geology, 2011, 32(3): 239-243 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201103008.htm [2] 邬光辉, 杨海军, 屈泰来, 等. 塔里木盆地塔中隆起断裂系统特征及其对海相碳酸盐岩油气的控制作用[J]. 岩石学报, 2012, 28(3): 793-805. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203009.htmWu G H, Yang H J, Qu T L, et al. The fault system characteristics and its controlling roles on marine carbonate hydrocarbon in the central uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(3): 793-805 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203009.htm [3] 李相文, 冯许魁, 刘永雷, 等. 塔中地区奥陶系走滑断裂体系解剖及其控储控藏特征分析[J]. 石油物探, 2018, 57(5): 764-774. doi: 10.3969/j.issn.1000-1441.2018.05.016Li X W, Feng X K, Liu Y L, et al. Characteristic of the strike-slip faults system and effect of faults on reservoir and hydrocarbon accumulation in Tazhong area, China[J]. Geophysical Prospecting for Petroleum, 2018, 57(5): 764-774 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2018.05.016 [4] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htmJiao F Z. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm [5] 丁辉, 潘静文, 高亚宾. 塔中顺南井区断裂发育规律及对储层的控制[J]. 内蒙古石油化工, 2015(7): 59-61. doi: 10.3969/j.issn.1006-7981.2015.07.024Ding H, Pan J W, Gao Y B. Analysis on features of faults and main controlling factors of reserviors in ShunNan Area, the middle Tarim Basin[J]. Inner Mongolia Petrochemical Industry, 2015(7): 59-61 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7981.2015.07.024 [6] 张承泽, 于红枫, 张海祖, 等. 塔中地区走滑断裂特征、成因及地质意义[J]. 西南石油大学学报: 自然科学版, 2008, 30(5): 22-26. doi: 10.3863/j.issn.1000-2634.2008.05.005Zhang C Z, Yu H F, Zhang H Z, et al. Characteristic, genesis and geologic meaning of strike-slip fault system in tazhong area[J]. Journal of South West Petroleum University: Science & Technology Edition, 2008, 30(5): 22-26. doi: 10.3863/j.issn.1000-2634.2008.05.005 [7] 杨洋, 冯许魁, 刘永雷, 等. 塔中中古8井区走滑断裂特征及其对孔洞型油气藏的控制作用[J]. 物探化探计算技术, 2018, 40(4): 425-430. doi: 10.3969/j.issn.1001-1749.2018.04.03Yang Y, Feng X K, Liu Y L, et al. Characteristic of strike-slip fault and its control effect on the fractured-vuggy carbonate reserviors in ZG-8 well area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(4): 425-430 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1749.2018.04.03 [8] 付晨阳, 汤良杰, 曹自成, 等. 塔中北坡走滑断裂横向变形差异及其油气地质意义[J]. 石油实验地质, 2017, 39(6): 783-789. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201706009.htmFu C Y, Tang L J, Cao Z C, et al. Lateral deformation difference of strike-slip faults on the northern slope of Tazhong uplift and its control on petroleum geology[J]. Petroleum Geology & Experiment, 2017, 39(6): 783-789 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201706009.htm [9] 杨圣彬, 刘军, 李慧莉, 等. 塔中北围斜区北东向走滑断裂特征及其控油作用[J]. 石油与天然气地质, 2013, 34(6): 797-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306013.htmYang S B, Liu J, Li H L, et al. Characteristics of the NE-trending strike-slip fault system and its control on oil accumulation in north peri-cline area of the Tazhong paleouplift[J]. Oil & Gas Geology, 2013, 34(6): 797-802 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306013.htm [10] 韩剑发, 苏洲, 陈利新, 等. 塔里木台盆区走滑断裂控储控藏作用及勘探潜力[J]. 石油学报, 2019, 40(11): 1296-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201911002.htmHan J F, Su Z, Chen L X, et al. Reservior-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11): 1296-1310 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201911002.htm [11] 刘凡瑀, 陈红汉, 唐大卿, 等. 塔里木盆地中-新生界构造单元划分[J]. 地质科技情报, 2012, 31(3): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203005.htmLiu F Y, Chen H H, Tang D Q, et al. Division of Mesozoic and Cenozoic structural units in Tarim Basin[J]. Geological Science and Technology Information, 2012, 31(3): 24-30 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203005.htm [12] 王坤, 刘伟, 黄擎宇, 等. 塔里木盆地塔中-古城地区寒武系沉积体系发育特征与演化[J]. 地质科技情报, 2015, 34(6): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506016.htmWang K, Liu W, Huang Q Y, et al. Development characteristics and evolution of the cambrian sedimentary system in Tazhong and Gucheng area, Tarim Basin[J]. Geological Science and Technology Information, 2015, 34(6): 116-124 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506016.htm [13] 周铂文, 陈红汉, 云露, 等. 塔里木盆地顺北地区一间房组台地碳酸盐岩异常泥质含量与断裂带距离及裂缝发育关系[J]. 地质科技通报, 2020, 39(6): 93-102. doi: 10.19509/j.cnki.dzkq.2020.0609Zhou B W, Chen H H, Yun L, et al. Relationship between argillaceous content and distance to main faulted zone and fractures development in the platform carbonate rocks of Yijianfang Formation in Shunbei area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 93-102 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0609 [14] 杜锦, 马德波, 刘伟, 等. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005007.htmDu J, Ma D B, Liu W, et al. Structural characteristics and formation mechanism of faults in Xiaotangnan area, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2020, 31(5): 658-666 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005007.htm [15] 孔永吉, 吴孔友, 刘寅. 塔里木盆地顺南地区走滑断裂发育特征及演化[J]. 地质与资源, 2020, 29(5): 446-453. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202005006.htmKong Y J, Wu K Y, Liu Y. Development and evolution of the strike-slip faults in Shunnan area, TarimBasin[J]. Geology and Resources, 2020, 29(5): 446-453 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202005006.htm [16] 韩晓影, 汤良杰, 曹自成, 等. 塔中北坡"复合花状"构造发育特征及成因机制[J]. 地球科学, 2018, 43(2): 525-537. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802014.htmHan X Y, Tang L J, Cao Z C, et al. Characteristics and genesis of "composite flower-like" tectonic development on the northern slope of Tazhong[J]. Earth Science, 2018, 43(2): 525-537 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802014.htm [17] 甄素静, 汤良杰, 李宗杰, 等. 塔中北坡顺南地区走滑断裂样式、变形机理及石油地质意义[J]. 天然气地球科学, 2015, 26(12): 2315-2324. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201512012.htmZeng S J, Tang L J, Li Z J, et al. Strike-slip fault patern, deformation mechanism and petroleum geological significance in the Shunnan area on the northern slope of Tazhong[J]. Natural Gas Geoscience, 2015, 26(12): 2315-2324 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201512012.htm [18] 苗林. 塔中北坡地区奥陶系储层特征及主控因素分析[J]. 石化技术, 2020, 27(5): 89-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJS202005050.htmMiao L. Analysis of Ordovician reservoir characteristics and main controlling factors in north slope of Tazhong area[J]. Petrochemical Industry Technology, 2020, 27(5): 89-90 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJS202005050.htm [19] 李海英, 刘军, 龚伟, 等. 顺北地区走滑断裂与断溶体圈闭识别描述技术[J]. 中国石油勘探, 2020, 25(3): 107-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003010.htmLi H Y, Liu J, Gong W, et al. Identification and characterization of strike-slip faults and traps of fault-karst reservior in Shunbei area[J]. China Petroleum Exploration, 2020, 25(3): 107-120 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003010.htm -