Experimental study on creep behaviors of red sandstone in Sichuan and Chongqing under acid corrosion
-
摘要:
岩石蠕变特性对岩体工程的长期稳定有着重要影响, 尤其是在酸雨等水化学作用下, 岩石的细观结构遭到破坏, 蠕变特性及变形更为显著。以重庆二佛寺红层砂岩为研究对象, 通过开展室内三轴压缩分级蠕变试验, 研究了酸腐蚀状态下砂岩的蠕变特性。结果表明: 酸的腐蚀和浸泡会使砂岩内部孔隙增加, 导致砂岩在第一级荷载下会产生较大的瞬时应变和蠕变量, 之后瞬时应变量和蠕变量随着应力增加而增大; 岩样受到腐蚀软化, 蠕变破坏强度为抗压强度的76%, 长期强度仅为抗压强度的54%。为了描述蠕变全过程, 建立了一个损伤蠕变模型来拟合试验数据, 验证了其适用性, 可以为岩土工程建设的稳定性提供参考。
Abstract:The creep characteristics of rock have an important effect on the long-term stability of rock engineering. Especially under the action of acid rain and other water chemistry, the rock microstructure is destroyed, and the creep characteristics and deformation are more significant. With the red sandstone of the Erfo Temple in Chongqing as the research object, the creep characteristics of sandstone under acid corrosion are studied by triaxial compression creep test. The results show that the porosity of sandstone increases with acid corrosion and immersion, which leads to the large instantaneous strain and creep of sandstone under the first stage load, and then the instantaneous strain and creep increase with the increase in stress. The creep strength is 76% of the compressive strength, and the long-term strength is only 54% of the compressive strength. To describe the whole creep process, a damage creep model is established to fit the test data, and its applicability is verified, which provides a reference for geotechnical engineering construction.
-
Key words:
- sandstone /
- creep test /
- creep damage model /
- acid corrosion
-
表 1 岩石强度和变形参数结果
Table 1. Rock strength and deformation parameter results
岩样编号 工况 围压/MPa 抗压强度/MPa 峰值应变/10-3 弹性模量/GPa 泊松比 13 酸腐蚀 1 36.7 7.705 3.649 0.368 7 饱水 1 24.2 6.864 3.083 0.100 30 干燥 1 48.8 6.085 6.516 0.116 表 2 各级荷载下的轴向应变量
Table 2. Axial strain variable under various loads
加载级数 瞬时应变ε0/% 蠕变量ε/% 1 0.506 9 0.038 5 2 0.048 5 0.023 6 3 0.040 5 0.024 2 4 0.035 0 0.030 5 5 0.031 6 0.036 1 6 0.022 9 0.035 9 7 0.028 6 0.055 4 8 0.018 6 0.038 1 9 0.016 4 0.045 9 10 0.003 4 0.069 6 表 3 各应力水平下拟合参数
Table 3. Fit parameters at various stress levels
应力大小/MPa K0/GPa G0/GPa G1/GPa η1/GPa·h η2/GPa·h η3/GPa·h m R2 12 2.595 0.751 19.675 402.352 — — — 0.980 1 14 2.728 0.790 21.655 387.043 — — — 0.990 6 24 3.117 0.902 48.691 1023.359 709.597 — — 0.984 5 26 3.316 0.960 36.247 111.153 871.840 — — 0.978 8 28 3.569 1.033 49.645 4.020 30.149 48.267 0.007 0.997 2 表 4 拟合参数
Table 4. Fitting parameters
应力大小/MPa K0/GPa G0/GPa G1/GPa η1/(GPa·h) η2/(GPa·h) η3/(GPa·h) m R2 7 140.550 5.525 15.744 55.341 — — — 0.965 9 14 80.485 5.431 34.238 289.663 — — — 0.952 4 21 110.867 5.637 57.190 247.253 257.069 — — 0.983 9 28 143.503 5.405 89.571 51.626 706.105 368.931 0.004 0.978 4 -
[1] Zhang M, McSaveney M. Is air pollution causing landslides in China?[J]. Earth & Planetary Science Letters, 2018, 481: 284-289. doi: 10.11899/zzfy20180204 [2] 王芝银, 杨志法, 李云鹏, 等. 石窟顶板流变断裂过程的数值模拟与反演分析[J]. 岩石力学与工程学报, 2006, 25(1): 9-14. doi: 10.3321/j.issn:1000-6915.2006.01.002Wang Z Y, Yang Z F, Li Y P, et al. Numerical simulation and back analysis of rheologic fracture process of Longyou grotto roof[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(1): 9-14(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2006.01.002 [3] 陈卫昌, 李黎, 邵明申, 等. 酸雨作用下碳酸盐岩类文物的溶蚀过程与机理[J]. 岩土工程学报, 2017, 39(11): 2058-2067. doi: 10.11779/CJGE201711014Chen W C, Li L, Shao M S, et al. Experimental study on carbonate dissolution and erosion effect under attack of simulated sulphuric acid rain[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2058-2067(in Chinese with English abstract). doi: 10.11779/CJGE201711014 [4] 马淑芝, 方云, 贾洪彪, 等. 云冈石窟第9、10窟列柱地质病害特征与加固设计[J]. 地质科技情报, 2011, 30(1): 123-126. doi: 10.3969/j.issn.1000-7849.2011.01.022Ma S Z, Fang Y, Jia H B, et al. Characters of geological disease and reinforcement design of the 9th and 10th grotto's columniations of Yungang Grottoes[J]. Geological Science and Technology Information, 2011, 30(1): 123-126(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.01.022 [5] 宋佳航, 严绍军, 项伟, 等. 大足石刻宝顶山砂岩毛细水迁移特性影响因素研究[J/OL]. 地质科技通报: 1-11[2021-05-26]DOI: 10.19509/j.cnki.dzkq.2021.0099.Song J H, Yan S J, Xiang W, et al. Study on the influencing factors of capillary water migration inside the Baoding area sandstone of the Dazu Stone Carvings[J/OL]. Bulletin of Geological Science and Technology: 1-11[2021-05-26]. DOI: 10.19509/j.cnki.dzkq.2021.0099(in Chinese with English abstract). [6] 朱合华, 叶斌. 饱水状态下隧道围岩蠕变力学性质的试验研究[J]. 岩石力学与工程学报, 2002, 21(12): 1791-1796. doi: 10.3321/j.issn:1000-6915.2002.12.009Zhu H H, Ye B. Experimental study on mechanical properties of rock creep in saturation[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1791-1796(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2002.12.009 [7] 康文献, 于怀昌, 王玲玲, 等. 三轴应力下水对粉砂质泥岩蠕变力学特性影响作用试验研究[J]. 工程地质学报, 2016, 24(4): 622-628. doi: 10.13544/j.cnki.jeg.2016.04.018Kang W X, Yu H C, Wang L L, et al. Experimental study of influence of water on creep properties of silty mudstone under triaxial compression[J]. Journal of Engineering Geology, 2016, 24(4): 622-628(in Chinese with English abstract). doi: 10.13544/j.cnki.jeg.2016.04.018 [8] Yu C, Tang S, Tang C, et al. The effect of water on the creep behavior of red sandstone[J]. Engineering Geology, 2019, 253: 64-74. doi: 10.1016/j.enggeo.2019.03.016 [9] 王泽成, 李栋伟, 张潮潮, 等. 考虑含水率对人工冻结红黏土力学特性的影响[J/OL]. 地质科技通报: 1-7[2021-05-26]. DOI: 10.19509/j.cnki.dzkq.2022.0090.Wang Z C, Li D W, Zhang C C, et al. Effect of water content on mechanical properties of artificially frozen red clay[J]. Bulletin of Geological Science and Technology: 1-7[2021-05-26]. DOI: 10.19509/j.cnki.dzkq.2022.0090(in Chinese with English abstract). [10] 谢森林. 酸腐蚀条件下石膏岩单轴压缩蠕变损伤特性及本构模型研究[D]. 长沙: 湖南科技大学, 2020.Xie S L. Research on uniaxial compression creep damage characteristics and constitutive model of gypsum rock under acid corrosion[D]. Changsha: University of Science and Technology of Hunan, 2020(in Chinese with English abstract). [11] 徐晓晨. 腐蚀砂岩蠕变试验及微观结构研究[D]. 郑州: 中原工学院, 2018.Xu X C. Study on creep and microstructure of corroded sandstone[D]. Zhengzhou: Zhongyuan University of Technology, 2018(in Chinese with English abstract). [12] 周宏伟, 王春萍, 段志强, 等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学: 物理学、力学、天文学, 2012, 42(3): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201203012.htmZhou H H, Wang C P, Duan Z Q, et al. Time-based fractional derivative approach to creep constitutive model of salt rock[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2012, 42(3): 310-318(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201203012.htm [13] 汪妍妍, 盛冬发. 岩石非线性黏弹塑性蠕变模型研究[J]. 应用力学学报, 2020, 37(2): 689-694, 936. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202002033.htmWang Y Y, Sheng D F. Investigation on nonlinear viscoelasto-plastic creep model of rocks[J]. Chinese Journal of Applied Mechanics, 2020, 37(2): 689-694, 936(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202002033.htm [14] 张向东, 王睿, 张印, 等. 砂岩蠕变损伤模型特性[J]. 辽宁工程技术大学学报: 自然科学版, 2019, 38(1): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201901007.htmZhang X D, Wang R, Zhang Y, et al. Creep damage model of sandstone[J]. Journal of Liaoning Technical University: Natural Science Edition, 2019, 38(1): 39-43(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201901007.htm [15] 刘文博, 张树光, 陈雷, 等. 基于统计损伤原理的岩石加速蠕变模型研究[J]. 岩土工程学报, 2020, 42(9): 1696-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009020.htmLiu W B, Zhang S G, Chen L, et al. Accelerated creep model for rock based on statistical damage principle[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1696-1704(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009020.htm [16] Liu H Z, Xie H Q, He J D, et al. Nonlinear creep damage constitutive model for soft rocks[J]. Mechanics of Time Dependent Materials, 2016, 21(1): 73-96. [17] 安阳, 晏鄂川, 李兴明, 等. 石膏岩干湿循环细观模拟及损伤本构模型[J]. 地质科技情报, 2019, 38(4): 240-246. doi: 10.19509/j.cnki.dzkq.2019.0425An Y, Yan E C, Li X M, et al. Meso simulation of dry wet cycle and damage constitutive model of gypsum rock[J]. Geological Science and Technology Information, 2019, 38(4): 240-246(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2019.0425 [18] 谢妮, 孙晨光, 李鹏程. 水化学作用下砂岩力学特性劣化试验研究[J]. 科学技术与工程, 2021, 21(23): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202123019.htmXie N, Sun C G, Li P C. Experimental study on mechanical properties deterioration of sandstone under hydrochemical action[J]. Science Technology and Engineering, 2021, 21(23): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202123019.htm [19] 张灿, 孟小星, 张关丽. 重庆地区酸雨污染现状[J]. 绿色科技, 2018(16): 11-14. doi: 10.16663/j.cnki.lskj.2018.16.004Zhang C, Meng X X, Zhang G L. Acid rain pollution in Chongqing area[J]. Green Science and Technology, 2018(16): 11-14(in Chinese with English abstract). doi: 10.16663/j.cnki.lskj.2018.16.004 [20] Heap M J, Baud P, Meredith P G, et al. Time-dependent brittle creep in Darley Dale sandstone[J]. Journal of Geophysical Research Solid Earth, 2009, 114(B7): B07203. [21] Heap M, Baud P, Meredith P, et al. Brittle creep in basalt and its application to time-dependent volcano deformation[J]. Earth & Planetary Science Letters, 2011, 307(1): 71-82(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2011.01.013 [22] 宋勇军. 干燥和饱水状态下炭质板岩流变力学特性与模型研究[D]. 西安: 长安大学, 2013.Song Y J. Study on rheological mechanical properties and model of carbonaceous slate in dry and saturated state[D]. Xi'an: Chang'an University, 2013(in Chinese with English abstract). [23] 杨帅东, 谭维佳, 方应学. 石英砂岩蠕变力学特性及长期强度研究[J]. 水力发电, 2021, 47(4): 43-50. doi: 10.3969/j.issn.0559-9342.2021.04.010Yang S D, Tan W J, Fang Y X. Study on creep mechanical properties and long-term strength of quartz sandstone[J]. Water Power, 2021, 47(4): 43-50(in Chinese with English abstract). doi: 10.3969/j.issn.0559-9342.2021.04.010 [24] 沈明荣, 谌洪菊. 红砂岩长期强度特性的试验研究[J]. 岩土力学, 2011, 32(11): 3301-3305. doi: 10.3969/j.issn.1000-7598.2011.11.017Shen M R, Chen H J. Testing study of long-term strength characteristics of red sandstone[J]. Rock and Soil Mechanics, 2011, 32(11): 3301-3305(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.11.017 [25] Rabotnov Y N. On the equation of state of creep[J]. Proceedings of the Institution of Mechanical Engineers Conference Proceedings, 1963, 178(31): 117-122. [26] 张亮亮, 王晓健. 岩石黏弹塑性损伤蠕变模型研究[J]. 岩土工程学报, 2020, 42(6): 1085-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006015.htmZhang L L, Wang X J. Viscoelastic-plastic damage creep model for rock[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1085-1092(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006015.htm [27] 齐亚静, 姜清辉, 王志俭, 等. 改进西原模型的三维蠕变本构方程及其参数辨识[J]. 岩石力学与工程学报, 2012, 31(2): 347-355. doi: 10.3969/j.issn.1000-6915.2012.02.014Qi Y J, Jiang Q H, Wang Z J, et al. 3D creep constitutive equation of modified Nishihara model and its parameters identification[J]. Chinese Journal of Rock Mechanics & Engineering, 2012, 31(2): 347-355(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.02.014 [28] 刘凡熙, 赵立财, 余建星, 等. 砂岩蠕变特性试验及三维非线性力学模型研究[J]. 山东科学, 2021, 34(2): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKX202102015.htmLiu F X, Zhao L C, Yu J X, et al. study on creep characteristics of sandstone and three-dimensional nonlinear mechanical model[J]. Shandong Science, 2021, 34(2): 104-113(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDKX202102015.htm -