Advances in composition and dating methods of fault gouge and weakening mechanisms of earthquake faults in bedrock area
-
摘要:
断层泥作为脆性断层活动的产物,是厘定断层的变形特征、形成时代与弱化机制的重要研究对象,在构造地质和地震地质等研究中具有重要意义。因此,全面了解断层泥的研究与进展,有助于基岩区古地震的研究。在系统收集和分析国内外相关资料的基础上,全面介绍了断层泥的矿物组成、石英形貌特征、定年方法与地震断层弱化机制等方面的研究进展,以及断层泥在基岩区地震断层研究中的应用。断层泥主要由黏土矿物(蒙脱石、伊利石、高岭石以及绿泥石等)与围岩矿物的碎粉和碎砾(石英、长石、云母、方解石、白云石等)组成。断层泥中的石英、伊利石与方解石是限定断层活动期次和形成时代的主要测试对象。目前断层泥定年方法主要包括石英微形貌特征分析法、石英ESR和OSL定年法、伊利石K-Ar或40Ar/39Ar定年法和方解石U-Pb定年法。地震断层的弱化机制研究主要涉及断层泥中矿物细粒化与新矿物形成、岩石组构的发育、断层摩擦生热、熔体形成与热增压等方面。
Abstract:Fault gouges result from the sliding of brittle faults and can be used to determine the deformational characteristics, formation ages and weakening mechanisms of earthquake faults, which are of great significance for structural geology and earthquake geology. Therefore, the comprehensive understanding of the research findings and its advances in fault gouges will contribute to palaeoseismic investigations. On the basis of collected and absorbed data, we introduced comprehensive advances in the components of fault gouges, surface textures of quartz grains from fault gouges, dating methods of fault gouges and weakening mechanisms of earthquake faults. The fault gouge is mainly composed of clay minerals and powder and debris of wall rocks. The clay minerals mainly consist of montmorillonite, illite, kaolinite and chlorite. The powder and debris of wall rocks are mainly composed of quartz, feldspar, mica, calcite and dolomite. Quartz, illite and calcite selected from fault gouges could be used to distinguish the polysstages of faulting and date its formation ages. Geochronological methods include surface texture analysis of quartz grains, electron spin resonance (ESR) and optically stimulated luminescence (OSL)dating of quartz, K-Ar or 40Ar/39Ar dating of illite, and U-Pb dating of calcite. The weakening mechanisms of earthquake faults consist of the powder of minerals, the formation of new minerals and fabric development in fault gouges, and frictional heating, frictional melting and thermal pressurization after fault initialization.
-
Key words:
- earthquake fault /
- fault gouge /
- composition /
- dating method /
- weakening mechanism of fault
-
图 1 断层横切剖面的概念模型(据文献[18]修改)
Figure 1. Conceptual block diagram of a fault zone across a fault
图 5 加拿大比格克里克断层泥中伊利石K-Ar年龄与粒径分组散点图(a)和其断层中方解石擦抹晶体和脉体的U-Pb年龄(b) (据文献[13]修改)
Figure 5. Scatter diagram of illite K-Ar ages vs.illite grain sizes (a), and calcite U-Pb ages of fibrous crystals and veins (b) from the Big Creek fault in Canada
表 1 断层泥年代学分析方法
Table 1. Geochronology for dating fault gouges
测试方法 分析对象 实验仪器 测年范围 采样要求 优缺点 微形貌 石英 XRD, SEM, TEM 晚中新世之后 约200 cm3断层泥 费用低、精度低 ESR 石英 电子顺磁共振波普仪 0.5 ka~2.5 Ma 石英脉或断层面上石英擦抹晶体 费用低、可能信号重置不彻底 OSL 石英 光释光年代分析仪 0.1~200 ka 25 cm长管样或10 cm长岩心,避光采样 费用低、可能信号重置不彻底 K-Ar或40Ar/39Ar 伊利石 XRD, SEM, TEM稀有气体质谱仪 1~300 Ma 新鲜无蚀变断层泥,需要对伊利石挑纯 精度高,但周期长、费用高 U-Pb 方解石 LA-(MC-)ICP-MS 1~100 Ma 石英脉或断层面上石英擦抹晶体 精度高、分辨率高,技术问题 -
[1] Lockner D A, Morrow C, Moore D, et al. Low strength of deep San Andreas fault gouge from SAFOD core[J]. Nature, 2011, 472: 82-85. doi: 10.1038/nature09927 [2] Li H B, Wang H, Xu Z, et al. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1(WFSD-1)[J]. Tectonophysics, 2013, 584: 23-42. doi: 10.1016/j.tecto.2012.08.021 [3] Lin A M, Nishiwaki T. Repeated seismic slipping events recorded in a fault gouge zone: Evidence from the Nojima fault drill holes, SW Japan[J]. Geophysical Research Letters, 2019, 46(3): 1276-1283. doi: 10.1029/2019GL081927 [4] Kuo L W, Di F F, Spagnuolo E, et al. Fault gouge graphitization as evidence of past seismic slip[J]. Geology, 2017, 45(11): 979-982. doi: 10.1130/G39295.1 [5] Vrolijk P, Pevear D, Covey M, et al. Fault gouge dating: History and evolution[J]. Clay Minerals, 2018, 53(3): 305-324. doi: 10.1180/clm.2018.22 [6] 李海兵, 王焕, 李春锐, 等. 地震研究进展与趋势: 全球地震科学钻探研究综述[J]. 地球学报, 2019, 40(1): 117-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201901009.htmLi H B, Wang H, Li C R, et al. The progress in earthquake research: A review of the global earthquake scientific drilling[J]. Acta Geoscientica Sinica, 2019, 40(1): 117-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201901009.htm [7] Tsakalos E, Lin A, Kazantzaki M, et al. Absolute dating of past seismic events using the OSL technique on fault gouge material: A case study of the Nojima fault zone, SW Japan[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2019JB019257. [8] 赵奇, 闫义. 伊利石K-Ar/Ar-Ar年龄约束浅地表断层活动时间: 原理和潜力[J]. 地球科学进展, 2021, 36(7): 671-683. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202107003.htmZhao Q, Yan Y. Dating of shallow crusted faults by illite K-Ar/Ar-Ar ages: Principles and potential[J]. Advances in EarthScience, 2021, 36(7): 671-683(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202107003.htm [9] Buatier M D, Chauvet A, Kanitpanyacharoen W, et al. Origin and behavior of clay minerals in the Bogd fault gouge, Mongolia[J]. Journal of Structural Geology, 2012, 34: 77-90. doi: 10.1016/j.jsg.2011.10.006 [10] Hadizadeh J, Boyle A P, Holmes E, et al. Calcite-sealed microbreccias and fracture networks in SAFOD gouge outside the active creep zones: A CL study[C]. AGU Fall Meeting Abstracts, 2020. [11] Kanaori Y, Miyakoshi K, Kakuta T, et al. Dating fault activity by surface textures of quartz grains from fault gouges[J]. Engineering Geology, 1980, 16(3/4): 243-262. [12] Kanaori Y. Fracturing mode analysis and relative age dating of faults by surface textures of quartz grains from fault gouges[J]. Engineering Geology, 1983, 19(4): 261-281. doi: 10.1016/0013-7952(83)90011-X [13] Mottram C M, Kellett D A, Barresi T, et al. Syncing fault rock clocks: Direct comparison of U-Pb carbonate and K-Ar illite fault dating methods[J]. Geology, 2020, 48(12): 1179-1183. doi: 10.1130/G47778.1 [14] Dang J, Zhou Y. Amorphous materials and clay mineral formation in the coseismic gouge from a surface rupture of the Ms 8.0 Wenchuan earthquake[J]. Tectonophysics, 2021, 818: 229077. doi: 10.1016/j.tecto.2021.229077 [15] Kuo L W, Wu W J, Kuo C W, et al. Frictional strength and fluidization of water-saturated kaolinite gouges at seismic slip velocities[J]. Journal of Structural Geology, 2021, 150: 104419. doi: 10.1016/j.jsg.2021.104419 [16] Caine J S, Evans J P, Forster C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1025-1028. doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2 [17] Kim Y S, Peacock D C, Sanderson D J. Fault damage zones[J]. Journal of Structural Geology, 2004, 26(3): 503-517. doi: 10.1016/j.jsg.2003.08.002 [18] Choi J H, Edwards P, Ko K, et al. Definition and classification of fault damage zones: A review and a new methodological approach[J]. Earth-Science Reviews, 2016, 152: 70-87. doi: 10.1016/j.earscirev.2015.11.006 [19] Kuo L W, Li H, Smith S A, et al. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake[J]. Geology, 2014, 42(1): 47-50. doi: 10.1130/G34862.1 [20] Niwa M, Shimada K, Aoki K, et al. Microscopic features of quartz and clay particles from fault gouges and infilled fractures in granite: Discriminating between active and inactive faulting[J]. Engineering Geology, 2016, 210: 180-196. doi: 10.1016/j.enggeo.2016.06.013 [21] 倪凤娟, 郭福生, 黎广荣, 等. 内蒙古塔木素地区断层活动性研究: 来自断层泥及围岩主量元素及碳氧同位素的证据[J]. 地质科技情报, 2019, 38(4): 166-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904017.htmNi F J, Guo F S, Li G R, et al. Activity of the faults in Tamusu, Inner Mongolia: Evidence from major element and carbon-oxygen isotopes of the fault gouges and wall rocks[J]. Geological Science and Technology Information, 2019, 38(4): 166-174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904017.htm [22] Kanitpanyacharoen W, Chornkrathok S, Morley C K, et al. Microstructural evolution and deformation mechanisms of Khao Kho fault, Thailand[J]. Journal of Structural Geology, 2020, 136: 104055. doi: 10.1016/j.jsg.2020.104055 [23] 严春杰, 唐辉明, 孙云志. 利用扫描电镜和X射线衍射仪对滑坡滑带土的研究[J]. 地质科技情报, 2001, 20(4): 89-92. doi: 10.3969/j.issn.1000-7849.2001.04.019Yan C J, Tang H M, Sun Y Z. Study on the soil of slipping zone in landslides and its significance by scanning electron microscope and X-ray diffractometer[J]. Geological Science and Technology Information, 2001, 20(4): 89-92(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2001.04.019 [24] Yuan J, Yang J, Ma H, et al. Hydrothermal synthesis of nano-kaolinite from K-feldspar[J]. Ceramics International, 2018, 44(13): 15611-15617. doi: 10.1016/j.ceramint.2018.05.227 [25] Kadir S, Erman H, Erkoyun H. Mineralogical and geochemical characteristics and genesis of hydrothermal kaolinite deposits within Neogene volcanites, Kütahya(western Anatolia), Turkey[J]. Clays and Clay Minerals, 2011, 59(3): 250-276. doi: 10.1346/CCMN.2011.0590304 [26] Young R A, Hewat A W. Verification of the triclinic crystal structure of kaolinite[J]. Clays and Clay Minerals, 1988, 36(3): 225-232. doi: 10.1346/CCMN.1988.0360303 [27] Brantut N, Schubnel A, Rouzaud J N, et al. High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics[J]. Journal of Geophysical Research: Solid Earth, 2008, 113: B10401. doi: 10.1029/2007JB005551 [28] Uddin F. Montmorillonite: An introduction to properties and utilization[M]. London: Intech Open, 2018. [29] Odom I E. Smectite clay minerals: Properties and uses[J]. Mathematical and Physical Sciences: Series A, 1984, 311(1517): 391-409. [30] Tesei T, Lacroix B, Collettini C. Fault strength in thin-skinned tectonic wedges across the smectite-illite transition: Constraints from friction experiments and critical tapers[J]. Geology, 2015, 43(10), 923-926. doi: 10.1130/G36978.1 [31] Altaner S P, Ylagan R F. Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization[J]. Clays and Clay Minerals, 1997, 45(4): 517-533. doi: 10.1346/CCMN.1997.0450404 [32] Zwingmann H, Mancktelow N, Antognini M, et al. Dating of shallow faults: New constraints from the Alp Transit tunnel site(Switzerland)[J]. Geology, 2010, 38(6): 487-490. doi: 10.1130/G30785.1 [33] Mancktelow N, Zwingmann H, Mulch A. Timing and conditions of clay fault gouge formation on the Naxos detachment(Cyclades, Greece)[J]. Tectonics, 2016, 35(10): 2334-2344. doi: 10.1002/2016TC004251 [34] Rosenberg P E. The nature, formation, and stability of end-member illite: A hypothesis[J]. American Mineralogist, 2002, 87(1): 103-107. doi: 10.2138/am-2002-0111 [35] Gualtieri A F, Ferrari S, Leoni M, et al. Structural characterization of the clay mineral illite-1M[J]. Journal of Applied Crystallography, 2008, 41(2): 402-415. doi: 10.1107/S0021889808004202 [36] Scheiber T, Viola G, van der Lelij R, et al. Microstructurally-constrained versus bulk fault gouge K-Ar dating[J]. Journal of Structural Geology, 2019, 127: 103868. doi: 10.1016/j.jsg.2019.103868 [37] Worden R H, Griffiths J, Wooldridge L J, et al. Chlorite in sandstones[J]. Earth-Science Reviews, 2020, 204: 103105. doi: 10.1016/j.earscirev.2020.103105 [38] Haines S H, Kaproth B, Marone C, et al. Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution[J]. Journal of Structural Geology, 2013, 51: 206-225. doi: 10.1016/j.jsg.2013.01.002 [39] 申俊峰, 申旭辉, 曹忠全, 等. 断层泥石英微形貌特征在断层活动性研究中的意义[J]. 矿物岩石, 2007, 27(1): 90-96. doi: 10.3969/j.issn.1001-6872.2007.01.015Shen J F, Shen X H, Cao Z Q, et al. The characteristics and significances of quartz micro-appearance in the fault gouges on evaluation of the fault activity[J]. Journal of Mineral and Petrology, 2007, 27(1): 90-96(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6872.2007.01.015 [40] 杨主恩, 胡碧茹, 洪汉净. 活断层中断层泥的石英碎砾的显微特征及其意义[J]. 科学通报, 1984, 29(8): 484-486. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198408011.htmYang Z E, Hu B R, Hong H J. Micro-characteristics and significances of broken quartz in fault gouge of active fault[J]. Chinese Science Bulletin, 1984, 29(8): 484-486(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198408011.htm [41] Reinen L A. Seismic and aseismic slip indicators in serpentinite gouge[J]. Geology, 2000, 28(2): 135-138. doi: 10.1130/0091-7613(2000)28<135:SAASII>2.0.CO;2 [42] Gratier J P, Richard J, Renard F, et al. Aseismic sliding of active faults by pressure solution creep: Evidence from the San Andreas Fault Observatory at Depth[J]. Geology, 2011, 39(12): 1131-1134. doi: 10.1130/G32073.1 [43] Gratier J P, Thouvenot F, Jenatton L, et al. Geological control of the partitioning between seismic and aseismic sliding behaviours in active faults: Evidence from the Western Alps, France[J]. Tectonophysics, 2013, 600: 226-242. doi: 10.1016/j.tecto.2013.02.013 [44] Harris R A. Large earthquakes and creeping faults[J]. Reviews of Geophysics, 2017, 55(1): 169-198. doi: 10.1002/2016RG000539 [45] Chen Y, Feng J, Gao J, et al. Observations on the micro-texture and ESR spectra of quartz from fault gouge[J]. Quaternary Science Reviews, 1997, 16(3/5): 487-493. [46] Haines S H, van der Pluijm B A. Clay quantification and Ar-Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico[J]. Journal of Structural Geology, 2008, 30(4): 525-538. doi: 10.1016/j.jsg.2007.11.012 [47] Clauer N, Zwingmann H, Liewig N, et al. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals: A tentative explanation for age identities and differences[J]. Earth-Science Reviews, 2012, 115(1/2): 76-96. [48] Clauer N. The K-Ar and 40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals[J]. Chemical Geology, 2013, 354: 163-185. doi: 10.1016/j.chemgeo.2013.05.030 [49] 郑勇, 李海兵, 王世广, 等. 断层泥自生伊利石年龄分析及其在龙门山断裂带的应用[J]. 地球学报, 2019, 40(1): 173-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201901012.htmZheng Y, Li H B, Wang S G, et al. Authigenic illite age analysis for fault gouge and its application to the Longmenshan fault belt[J]. Acta Geoscientica Sinica, 2019, 40(1): 173-185(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201901012.htm [50] Roberts N M, Walker R J. U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534. doi: 10.1130/G37868.1 [51] Hansman R J, Albert R, Gerdes A, et al. Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite[J]. Geology, 2018, 46(3): 207-210. doi: 10.1130/G39822.1 [52] 赵子贤, 施伟. 方解石LA-(MC-)ICP-MS U-Pb定年技术及其在脆性构造中的应用[J]. 地球科学与环境学报, 2019, 41(5): 505-516. doi: 10.3969/j.issn.1672-6561.2019.05.001Zhao Z X, Shi W. LA-(MC-)ICP-MS U-Pb dating technique of calcite and its application in brittle structures[J]. Journal of Earth Sciences and Environment, 2019, 41(5): 505-516(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2019.05.001 [53] Buhay W M, Schwarcz H P, Grün R. ESR studies on quartz grains from fault gouges[J]. Quaternary Science Reviews, 1988, 7: 515-522. doi: 10.1016/0277-3791(88)90055-8 [54] Singhvi A K, Banerjee D, Pande K, et al. Luminescence studies on neotectonic events in south-central Kumaun Himalaya: A feasibility study[J]. Quaternary Science Reviews, 1994, 13(5/7): 595-600. [55] Fukuchi T. Assessment of fault activity by ESR dating of fault gouge: An example of the 500 m core samples drilled into the Nojima earthquake fault in Japan[J]. Quaternary Science Reviews, 2001, 20(5/9): 1005-1008. [56] 田婷婷, 吴中海, 张克旗, 等. 第四纪主要定年方法及其在新构造与活动构造研究中的应用综述[J]. 地质力学学报, 2013, 19(3): 242-266. doi: 10.3969/j.issn.1006-6616.2013.03.002Tian T T, Wu Z H, Zhang K Q, et al. Overview of Quaternary dating methods and their application in neotectonics and active tectonics research[J]. Journal of Geomechanics, 2013, 19(3): 242-266(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6616.2013.03.002 [57] Grün R. Electron spin resonance(ESR) dating[J]. Quaternary International, 1989, 1: 65-109. doi: 10.1016/1040-6182(89)90010-4 [58] Rink W J, Bartoll J, Schwarcz H P, et al. Testing the reliability of ESR dating of optically exposed buried quartz sediments[J]. Radiation Measurements, 2007, 42(10): 1618-1626. doi: 10.1016/j.radmeas.2007.09.005 [59] Rink W J, Toyoda S, Rees-Jones J, et al. Thermal activation of OSL as a geothermometer for quartz grain heating during fault movements[J]. Radiation Measurements, 1999, 30(1): 97-105. doi: 10.1016/S1350-4487(98)00095-X [60] Yang H L, Chen J, Yao L, et al. Resetting of OSL/TL/ESR signals by frictional heating in experimentally sheared quartz gouge at seismic slip rates[J]. Quaternary Geochronology, 2019, 49: 52-56. doi: 10.1016/j.quageo.2018.05.005 [61] Fukuchi T, Imai N. Resetting experiment of E' centres by natural faulting: The case of the Nojima earthquake fault in Japan[J]. Quaternary Science Reviews, 1998, 17(11): 1063-1068. doi: 10.1016/S0277-3791(97)00102-9 [62] Liu C R, Yin G M, Zhou Y S, et al. ESR studies on quartz extracted from shallow fault gouges related to the Ms 8.0 Wenchuan earthquake-China: Implications for ESR signal resetting in Quaternary faults[J]. Quaternaire, 2014, 25(1): 67-74. [63] Lee H K, Henry P S. ESR dating of the subsidiary faults in the Yangsan fault system, Korea[J]. Quaternary Science Reviews, 2001, 20(5/9): 999-1003. [64] Murray A S, Olley J M. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: A status review[J]. Geochronometria, 2002, 21(1): 1-16. [65] Madsen A T, Murray A S. Optically stimulated luminescence dating of young sediments: A review[J]. Geomorphology, 2009, 109(1/2): 3-16. [66] Toyoda S, Rink W J, Schwarcz H P, et al. Crushing effects on TL and OSL on quartz: Relevance to fault dating[J]. Radiation Measurements, 2000, 32(5/6): 667-672. [67] Kim J H, Ree J H, Choi J H, et al. Experimental investigations on dating the last earthquake event using OSL signals of quartz from fault gouges[J]. Tectonophysics, 2019, 769: 228191. doi: 10.1016/j.tecto.2019.228191 [68] Solum J G, van der Pluijm B A, Peacor D R. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah[J]. Journal of Structural Geology, 2005, 27(9): 1563-1576. doi: 10.1016/j.jsg.2005.05.002 [69] Pevear D R. Illite and hydrocarbon exploration[J]. Proceedings of the National Academy of Sciences, 1999, 96(7): 3440-3446. doi: 10.1073/pnas.96.7.3440 [70] Torgersen E, Viola G, Zwingmann H, et al. Structural and temporal evolution of a reactivated brittle-ductile fault-Part Ⅱ: Timing of fault initiation and reactivation by K-Ar dating of synkinematic illite/muscovite[J]. Earth and Planetary Science Letters, 2015, 410: 212-224. doi: 10.1016/j.epsl.2014.09.051 [71] Kuo L W, Song S R, Huang L, et al. Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan[J]. Tectonophysics, 2011, 502(3/4): 315-327. [72] Ma K F, Brodsky E E, Mori J, et al. Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake(Mw7.6)[J]. Geophysical Research Letters, 2003, 30(5): 1244. [73] 付碧宏, 王萍, 孔屏, 等. 四川汶川5.12大地震同震滑动断层泥的发现及构造意义[J]. 岩石学报, 2008, 24(10): 2237-2243. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810005.htmFu B H, Wang P, Kong P, et al. Preliminary study of coseismic fault gouge occurred in the slip zone of the Wenchuan Ms 8.0 earthquake and its tectonic implications[J]. Acta Petrologica Sinica, 2008, 24(10): 2237-2243(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810005.htm [74] Tadokoro K, Ando M, Nishigami K Y. Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B3): 6089-6104. doi: 10.1029/1999JB900416 [75] Kano Y, Mori J, Fujio R, et al. Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake[J]. Geophysical Research Letters, 2006, 33: L14036. [76] Fulton P M, Brodsky E E, Kano Y, et al. Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements[J]. Science, 2013, 342: 1214-1217. doi: 10.1126/science.1243641 [77] LiH B, Xue L, Brodsky E E, et al. Long-term temperature records following the Mw 7.9 Wenchuan(China) earthquake are consistent with low friction[J]. Geology, 2015, 43(2): 163-166. doi: 10.1130/G35515.1 [78] Reches Z E, Lockner D A. Fault weakening and earthquake instability by powder lubrication[J]. Nature, 2010, 467: 452-455. doi: 10.1038/nature09348 [79] Warr L N, Cox S. Clay mineral transformations and weakening mechanisms along the Alpine fault, New Zealand[J]. Geological Society, London, Special Publications, 2001, 186(1): 85-101. doi: 10.1144/GSL.SP.2001.186.01.06 [80] Collettini C, Niemeijer A, Viti C, et al. Fault zone fabric and fault weakness[J]. Nature, 2009, 462: 907-910. doi: 10.1038/nature08585 [81] Goldsby D L, Tullis T E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates[J]. Science, 2011, 334: 216-218. doi: 10.1126/science.1207902 [82] Di Toro G, Hirose T, Nielsen S, et al. Natural and experimental evidence of melt lubrication of faults during earthquakes[J]. Science, 2006, 311: 647-649. doi: 10.1126/science.1121012 [83] Di Toro G, Goldsby D L, Tullis T E. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates[J]. Nature, 2004, 427: 436-439. doi: 10.1038/nature02249 [84] Wibberley C A, Shimamoto T. Earthquake slip weakening and asperities explained by thermal pressurization[J]. Nature, 2005, 436: 689-692. doi: 10.1038/nature03901 [85] Sulem J, Famin V. Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature-limiting effects[J]. Journal of Geophysical Research: Solid Earth, 2009, 114: B03309. [86] Pozzi G, De Paola N, Nielsen S B, et al. Coseismic fault lubrication by viscous deformation[J]. Nature Geoscience, 2021, 14(6): 437-442. doi: 10.1038/s41561-021-00747-8 [87] Scholz C H. Evidence for a strong San Andreas fault[J]. Geology, 2000, 28(2): 163-166. doi: 10.1130/0091-7613(2000)28<163:EFASSA>2.0.CO;2 [88] Scholz C H, Cowie P A. Determination of total strain from faulting using slip measurements[J]. Nature, 1990, 346: 837-839. doi: 10.1038/346837a0 [89] Holdsworth R E, Van Diggelen E W E, Spiers C J, et al. Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas fault, California[J]. Journal of Structural Geology, 2011, 33(2), 132-144. [90] He X L, Li H B, Wang H, et al. Creeping along the Guanxian-Anxian fault of the 2008 Mw 7.9 Wenchuan earthquake in the Longmen Shan, China[J]. Tectonics, 2018, 37(7): 2124-2141. doi: 10.1029/2017TC004820 [91] Irwin W P, Barnes I. Effect of geologic structure and metamorphic fluids on seismic behavior of the San Andreas fault system in central and northern California[J]. Geology, 1975, 3(12): 713-716. doi: 10.1130/0091-7613(1975)3<713:EOGSAM>2.0.CO;2 [92] Moore D E, Rymer M J. Talc-bearing serpentinite and the creeping section of the San Andreas fault[J]. Nature, 2007, 448: 795-797. doi: 10.1038/nature06064 [93] Moore D E, Rymer M J. Metasomatic origin of fault gouge comprising the two creeping strands at SAFOD[C]//AGU Fall Meeting Abstracts, 2010: T41A-2105. [94] Ujiie K, Tanaka H, Saito T, et al. Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments[J]. Science, 2013, 342: 1211-1214. doi: 10.1126/science.1243485 [95] 刘静, 袁兆德, 徐岳仁, 等. 古地震学: 活动断裂强震复发规律的研究[J]. 地学前缘, 2021, 28(2): 211-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102016.htmLiu J, Yuan Z D, Xu Y R, et al. Paleoseismic investigation of the recurrence behavior of large earthquakes on active faults[J]. Earth Science Frontiers, 2021, 28(2): 211-231(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102016.htm [96] Deng C, Hao Q, Guo Z, et al. Quaternary integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019, 62(1): 324-348. doi: 10.1007/s11430-017-9195-4 [97] Cheng W, Liu Q, Zhao S, et al. Research and perspectives on geomorphology in China: Four decades in retrospect[J]. Journal of Geographical Sciences, 2017, 27(11): 1283-1310. doi: 10.1007/s11442-017-1436-y -