Meteorological early warning criterion for rainfall-induced landslides in Huanggang City, Hubei Province
-
摘要:
黄冈市是湖北省汛期地质灾害频发区之一, 地质灾害类型以滑坡为主, 其中75%为降雨型滑坡。通过统计分析黄冈市近10年滑坡与降雨的相关关系, 在考虑黄冈市地质灾害易发性分区基础上, 研究黄冈市降雨型滑坡的降雨阈值, 利用逻辑回归模型建立滑坡发生的概率预测模型, 再针对不同等级易发区提出对应的气象预警判据。最后以历史降雨及其滑坡事件检验预警判据的合理性与可信度。结果表明, 所建立的气象预警判据在时间尺度上由以往依托气象部门的中长期预警精细到了24 h的短临预警, 在空间尺度上确定了不同等级易发区的降雨型滑坡气象预警判据。预警准确率大幅提升, 显著提高了黄冈市降雨型滑坡气象预警精度, 可为临灾转移提供精细化的技术指导, 有效降低降雨型滑坡灾害带来的生命财产损失。
Abstract:Huanggang is one of the areas with frequent geological disasters in the flood season in Hubei Province. The main types of geological disaster are landslides, accounting for 75% of rainfall-induced landslides. Therefore, this paper statistically analyzes the correlation between rainfall and landslides in Huanggang City over the last 10 years, studies the rainfall threshold of rainfall-induced landslides in Huanggang City based on considering the prone zoning of geological disasters, establishes the effective rainfall model of landslide occurrence by using the logistic regression model and then puts forward the corresponding meteorological early warning criterion for different prone zone areas. Finally, the rationality and reliability of the early warning criterion are tested by historical rainfall and landslide events. The results show that the meteorological early warning criterion established significantly improves the accuracy of meteorological early warning for rainfall-induced landslides in Huanggang City, provides refined technical guidance for disaster transfer, and effectively reduces the loss of life and property caused by rainfall-induced landslides.
-
表 1 黄冈市降雨型滑坡前7 d降雨量-当日降雨量阈值统计
Table 1. Statisticals of the rainfall threshold of rainfall-induced landslides from the last seven days to the current day
易发性等级区 降雨量阈值公式 诱发滑坡的当日降雨量/mm 诱发滑坡的前7 d降雨量/mm 低易发区 y=-0.096 8x+68.426 68.426 706.880 中易发区 y=-0.197 4x+56.699 56.699 287.229 高易发区 y=-0.225 6x+32.096 32.096 142.270 极高易发区 y=-0.202 1x+28.400 28.400 140.524 表 2 黄冈市4 d累计降雨量模型计算结果统计
Table 2. Statisticals of the calculation results of the four-day cumulative rainfall model in Huanggang City
拟合优度检验 -2对数似然 考克斯-斯奈尔R2 内戈尔科R2 31.902 0.492 0.656 判断准确率 判断不发生灾害的准确率/% 判断发生灾害的准确率/% 综合准确率/% 90.9 87.0 88.9 分项统计量 B值 显著性检验 是否满足(<0.05) 当天 0.053 0.003 √ 前1天 0.024 0.046 √ 前2天 0.030 0.037 √ 前3天 0.028 0.012 √ 常量 -3.939 0.019 √ 表 3 黄风市5 d累计降雨量模型计算结果统计
Table 3. Statistical of the calculation results of the five-day cumulative rainfall model in Huanggang City
拟合优度检验 -2对数似然 考克斯-斯奈尔R2 内戈尔科R2 31.809 0.493 0.657 判断准确率 判断不发生灾害的准确率/% 判断发生灾害的准确率/% 综合准确率/% 90.9 87.0 88.9 分项统计量 B值 显著性检验 是否满足(<0.05) 当天 0.054 0.003 √ 前1天 0.024 0.062 × 前2天 0.030 0.036 √ 前3天 0.017 0.129 × 前4天 0.004 0.757 × 常量 -4.067 0.003 √ 表 4 黄冈市不同等级易发区回归模型
Table 4. Partition regression model of different grades of susceptibility in Huanggang City
易发性等级区 逻辑回归公式 准确率/% 中易发区 $ P=\frac{\exp \left(0.022 R_0+0.018 R_1+0.013 R_2+0.012 R_3-3.599\right)}{1+\exp \left(0.022 R_0+0.018 R_1+0.013 R_2+0.012 R_3-3.599\right)}$ 79.3 高易发区 $ P=\frac{\exp \left(0.033 R_0+0.023 R_1+0.021 R_2+0.012 R_3-2.939\right)}{1+\exp \left(0.033 R_0+0.023 R_1+0.021 R_2+0.012 R_3-2.939\right)}$ 82.9 极高易发区 $ P=\frac{\exp \left(0.037 R_0+0.025 R_1+0.016 R_2+0.011 R_3-2.375\right)}{1+\exp \left(0.037 R_0+0.025 R_1+0.016 R_2+0.011 R_3-2.375\right)}$ 83.2 注:P为预测滑坡发生概率;R0为滑坡发生的当日降雨量,Ri(i=1, 2, 3)为滑坡发生前第1, 2, 3 d的降雨量 表 5 不同概率条件下滑坡发生的当日降雨量统计
Table 5. Statistics of daily rainfall required for landslides under different probability conditions
易发性等级区 不同滑坡发生概率的当日降雨量/mm 20% 40% 60% 90% 中易发区 100.58 145.16 182.02 263.46 高易发区 47.05 76.77 101.32 155.64 极高易发区 26.72 53.23 75.15 123.57 表 6 黄冈市降雨型滑坡气象预警判据分级
Table 6. Classification table of meteorological early warning criterion for rainfall-induced landslides in Huanggang City
易发性分区 预警等级 预报降雨级别R/mm 小雨 中雨 大雨 暴雨 大暴雨 (0,10) [10,75) [25,150) [50,300) ≥100 中易发区 蓝色预警 前3 d累计有效降雨量(ΣR/mm) (0,112) (0,102) (0,87) (0,62) (0,12) 黄色预警 [112,162) [102,152) [87,137) [62,112) [12,62) 橙色预警 [162,210) [152,200) [137,185) [112,160) [62,110) 红色预警 ≥210 ≥200 ≥185 ≥160 ≥110 高易发区 蓝色预警 (0,55) (0,45) (0,30) (0,5) — 黄色预警 [55,90) [45,80) [30,65) [5,40) — 橙色预警 [90,123) [80,113) [65,98) [40,73) [0,23) 红色预警 ≥123 ≥113 ≥98 ≥73 ≥23 极高易发区 蓝色预警 (0,32) (0,22) (0,7) — — 黄色预警 [32,64) [22,54) [7,39) [0,14) — 橙色预警 [64,95) [54,85) [39,70) [14,45) — 红色预警 ≥95 ≥85 ≥70 ≥45 ≥0 注:R为预测未来24 h降雨量;——为无预警等级 -
[1] Campbell R H. Debris floes originating from soil slips during rains forms in southern California[J]. Engineering Geology, 1974, 7: 339-349. [2] Crozier M J. Landslides: Causes, consequences and environment[M]. London: Croom Helm Ltd., 1986: 107-108. [3] 王兰生, 李曰国, 詹铮, 等. 1981年暴雨期四川盆地区岩质滑坡的发育特征[J]. 大自然探索, 1982(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT198201014.htmWang L S, Li Y G, Zhan Z, et al. Development characteristics of rocky landslides in Sichuan Basin during rainstorm in 1981[J]. Nature Exploration, 1982(1): 44-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT198201014.htm [4] 付世军, 文敏. 南充市强降雨诱发地质灾害风险预警技术研究[J]. 现代农业科技, 2018(6): 189-192. doi: 10.3969/j.issn.1007-5739.2018.06.118Fu S J, Wen M. Research on risk early warning technology of geological disasters induced by heavy rainfall in Nanchong[J]. Modern Agricultural Science and Technology, 2018(6): 189-192(in Chinese with English abstract). doi: 10.3969/j.issn.1007-5739.2018.06.118 [5] 孙金山, 陈明, 左昌群, 等. 降雨型浅层滑坡危险性预测模型[J]. 地质科技情报, 2012, 31(2): 17-121. doi: 10.3969/j.issn.1000-7849.2012.02.019Sun J S, Chen M, Zuo C Q, et al. Risk prediction model of rainfall induced shallow landslide[J]. Geological Science and Technology Information, 2012, 31(2): 117-121(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2012.02.019 [6] 唐扬, 殷坤龙, 夏辉. 前期含水率对浅层滑坡降雨入渗及稳定性影响研究[J]. 地质科技情报, 2017, 36(5): 204-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705027.htmTang Y, Yin K L, Xia H. Study on the influence of early water content on rainfall infiltration and stability of shallow landslide[J]. Geological Science and Technology Information, 2017, 36(5): 204-208(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705027.htm [7] Baum R L, Savage W Z, Godt J W. TRIGRS: A Fortran program for transient rainfall infiltration and grid-based regional slope stability analysis[R]. [S.I.]: U.S. Geological Survey Open-File Report 02-0424, 2002: 35. [8] Lee M L, Ng K Y, Huang Y F, et al. Rainfall-induced landslides in Hulu Kelang area, Malaysia[J]. Nat. Hazards, 2014(70): 353-375. [9] Ascanio R, Tina P. Rainfall thresholds for rainfall-induced landslides in Slovenia[J]. Landslides, 2016, 13: 1571-1577. doi: 10.1007/s10346-016-0733-3 [10] 高华喜, 殷坤龙. 降雨与滑坡灾害相关性分析及预警预报阀值之探讨[J]. 岩土力学, 2007, 28(5): 1055-1060. doi: 10.3969/j.issn.1000-7598.2007.05.039Gao H X, Yin K L. Correlation analysis between rainfall and landslide disaster and discussion on early warning and prediction threshold[J]. Geotechnical Mechanics, 2007, 28(5): 1055-1060(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2007.05.039 [11] 陈静静, 姚蓉, 文强, 等. 湖南省降雨型地质灾害致灾雨量阈值分析[J]. 灾害学, 2014, 29(2): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201402010.htmChen J J, Yao R, Wen Q, et al. Analysis of rainfall threshold caused by rainfall type geological disasters in Hunan Province[J]. Disaster Science, 2014, 29(2): 42-47(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201402010.htm [12] 张国平, 宋建洋, 邵小路, 等. 近期我国大型地质灾害预报与避险案例分析[J]. 自然灾害学报, 2015, 24(3): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201503003.htmZhang G P, Song J Y, Shao X L, et al. Analysis of recent large-scale geological disaster prediction and risk avoidance cases in China[J]. Journal of Natural Disasters, 2015, 24(3): 20-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201503003.htm [13] 伍宇明, 兰恒星, 高星, 等. 台风暴雨型滑坡降雨阈值曲线研究: 以福建地区为例[J]. 工程地质学报, 2014, 22(2): 255-262. doi: 10.3969/j.issn.1004-9665.2014.02.015Wu Y M, Lan H X, Gao X, et al. Study on rainfall threshold curve of typhoon rainstorm landslide: Taking Fujian as an example[J]. Journal of Engineering Geology, 2014, 22(2): 255-262(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2014.02.015 [14] 李宇梅, 狄靖月, 许凤雯, 等. 基于当日临界雨量的国家级地质灾害风险预警方法[J]. 气象科技进展, 2018, 8(3): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201803014.htmLi Y M, Di J Y, Xu F W, et al. National geological disaster risk early warning method based on daily critical rainfall[J]. Advances in Meteorological Science and Technology, 2018, 8(3): 77-83(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201803014.htm [15] 刘艺梁, 殷坤龙, 刘斌. 逻辑回归和人工神经网络模型在滑坡灾害空间预测中的应用[J]. 水文地质工程地质, 2010, 9(5): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201005020.htmLiu Y L, Yin K L, Liu B. Application of logistic regression and artificial neural network model in spatial prediction of landslide disaster[J]. Hydrogeology and Engineering Geology, 2010, 9(5): 92-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201005020.htm [16] 赵海燕, 殷坤龙, 陈丽霞, 等. 基于有效降雨阈值的澧源镇滑坡灾害危险性分析[J]. 地质科技通报, 2020, 39(4): 85-93. doi: 10.19509/j.cnki.dzkq.2020.0431Zhao H Y, Yin K L, Chen L X, et al. Landslide hazard analysis of Liyuan Town based on effective rainfall threshold[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 85-93(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0431 [17] 中国地质灾害防治工程行业协会. 地质灾害区域气象风险预警标准(试行)[S]. 武汉: 中国地质大学出版社, 2018.China Geological Disaster Prevention and Control Engineering Industry Association. Regional meteorological risk early warning standard for geological disasters(Trial)[S]. Wuhan: China University of Geosciences Press, 2018(in Chinese). -