Deposition environment and provenance of the Palaeogene Shahejie Formation in Nanpu Sag: Evidences from trace and rare earth element geochemistry
-
摘要:
为深入认识南堡凹陷沙河街组富有机质泥页岩形成机理, 通过详细分析微量和稀土元素地球化学特征, 对其水体沉积环境及物源进行研究。结果表明: 微量元素Li, Cs, Bi较为富集; Cr, Sn较为亏损; 其他微量元素接近于上地壳元素含量。稀土元素总量变化范围宽泛, 接近或高于大陆上地壳的平均值, 指示陆源碎屑供给较为充足。REE分配模式表现为轻稀土元素富集, 分异程度较高; 重稀土元素相对亏损, 分异程度较低。铕元素异常值(
δ Eu)负异常明显, 铈元素异常值(δ Ce)基本正常。根据锶丰度和锶/钡比值的变化, 反映出沙三段沉积时期湖泊水体具有一定的分隔性, 淡水、半咸水和咸水环境共存; 沙一段沉积时期湖泊水体的连通性增强, 以半咸水环境为主。根据V/(V+Ni)、Th/U比值及δ Ce、铈异常指数(Ceanom)值特征, 反映出湖泊水体为分层较强的贫氧环境。源生Ba含量揭示出湖泊水体古生产力较高。通过稀土元素组合特征分析, 认为沙河街组物源主要来自燕山褶皱带于燕山期发育的花岗岩, 且混有少量沉积岩。南堡凹陷沙河街组泥页岩有机质富集程度与其古环境和古地理密切相关: 一是适宜的水体古盐度和丰富的水体营养物质适应多种浮游藻类的共同繁盛, 提高了湖泊水生有机质生产效率; 二是贫氧的水体环境减缓有机质在埋藏过程中的降解, 提高了沉积有机质保存效率。Abstract:In order to reveal the formation mechanism of the organic-rich shales of the Shahejie Formation in Nanpu Sag, the depositional environment and provenance were investigated in detail through analyzing trace and rare earth elements(REE) geochemical characteristics. The results show that the trace elements Li, Cs and Bi are enriched, Cr and Sn are relatively depleted, and other trace elements are close to those in the upper continental crust(UCC).The total amount of REE vary widely, which is close to or higher than the average value in the UCC, and the supply of terrestrial source debris is adequate. The REE allocation pattern shows light rare earth element(LREE) enrichment with a high degree of divergence, and a relative deficit of heavy rare earth element(HREE) with a low degree of divergence. Eu negative anomaly is obvious, Ce is basically normal. The variations of Sr abundance and Sr/Ba ratio reflect that, in Nanpu Sag, the lake water was separated to a certain extent, and the fresh water, brackish water and saline water coexisted during sedimentary period of the third member of Shahejie Formation(E
s 3), and during these dimentary period of the first member of Shahejie Formation(Es 1), the connectivity of lake water was enhanced, which was dominated by brackish water.The values of the V/(V+Ni), Th/U,δ Ce, and Ceanom comprehensively delineate the water body presented suboxic environment with moderate stratification. Respectively, the source Ba content indicated the water body was dominated by high paleoproductivity. The REE assemblage characteristics suggests that the provenance of Shahejie Formation were primarily derived from Yanshanian granites developed in Yanshanian fold belt and a small amount of sedimentary rocks. The development of organic-rich shales in the Shahejie Formation in Nanpu Sag is closely related to paleoenvironment and paleogeography, which can be summarized as the followings: ①suitable paleosalinity as well as sufficient nutrients at water body contributed to the booming of various planktonic algae, improving the production efficiency of the aquatic organic matter; ②suboxic water column slowed down the degradation of oxygen-sensitive material during the burial process, enhancing the preservation efficiency of sedimentary organic matter.-
Key words:
- Nanpu Sag /
- Shahejie Formation /
- trace element /
- rare earth element /
- deposition environment /
- provenance
-
表 1 南堡凹陷沙三段和沙一段泥岩元素地球化学数据
Table 1. Geochemical data of the Es3 and Es1 mudstones in Nanpu Sag
表 2 古盐度微量元素判断指标[26]
Table 2. Trace element index for paleosalinity recognition in samples
判断指标 淡水环境 半咸水环境 咸水环境 w(Sr)/10-6 ≤300 (300, 500] >500 Sr/Ba ≤0.6 (0.6, 1.0] >1.0 -
[1] Alias F L, Abdullah W H, Hakimi M H, et al. Organic geochemical characteristics and depositional environment of the Tertiary Tanjong Formation-coals in the Pinangah area, onshore Sabah, Malaysia[J]. International Journal of Coal Geology, 2012, 104: 9-21. doi: 10.1016/j.coal.2012.09.005 [2] Hao F, Zhou X H, Zhu Y M, et al. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China[J]. Organic Geochemistry, 2011, 42(4): 323-339. doi: 10.1016/j.orggeochem.2011.01.010 [3] 李浩, 陆建林, 李瑞磊, 等. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J]. 地球科学, 2017, 42(10): 1774-1786. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201710012.htmLi H, Lu J L, Li R L, et al. Generationpaleoenvironment and its controlling factors of lower cretaceous lacustrine hydrocarbon source rocks in Changling Depression, south Songliao Basin[J]. Earth Science, 2017, 42(10): 1774-1786 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201710012.htm [4] 夏刘文, 曹剑, 徐田武, 等. 盐湖生物发育特征及其烃源意义[J]. 地质评论, 2017, 63(6): 1149-1562. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706011.htmXia L W, Cao J, Xu T W, et al. Development characteristics of biologies in saline lake environments and their implications for hydrocarbon source[J]. Ceological Review, 2017, 63(6): 1149-1562 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706011.htm [5] 袁静, 肖运凤, 董道涛, 等. 高邮凹陷深凹带戴南组古生物特征及环境意义[J]. 西南石油大学学报: 自然科学版, 2018, 40(1): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201801002.htmYuan J, Xiao Y F, Dong D T, et al. Paleontological features and sedimentary environment of Dainan Formation in deep sag of Gaoyou Sag[J]. Journal of Southwest Petroleum University : Science & Technology Edition, 2018, 40(1): 11-21 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201801002.htm [6] 刘士磊, 王启飞, 龚莹杰, 等. 渤海海域古近纪微体化石组合特征及油气勘探意义[J]. 地层学杂志, 2012, 36(4): 700-709. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201204004.htmLiu S L, Wang Q F, Gong Y J, et al. Paleogene microfossil assemblages from the Bohai area and their importance for the oil and gas exploration[J]. Journal of Stratigraphy, 2012, 36(4): 700-709 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201204004.htm [7] Adegoke A K, Adegoke W H, Hakimi M H, et al. Geochemical characterisation and organic matter enrichment of Upper Cretaceous Gongila shales from Chad (Bornu) Basin, northeastern Nigeria: Bioproductivity versus anoxia conditions[J]. Journal of Petroleum Science and Engineering, 2015, 135: 73-87. doi: 10.1016/j.petrol.2015.08.012 [8] 张明亮, 郭伟, 沈俊, 等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报, 2017, 36(4): 95-106.Zhang M L, Guo W, Shen J, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4): 95-106 (in Chinese with English abstract). [9] Cao J, Wu M, Chen Y, et al. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China[J]. Chemie der Erde, 2012, 72(3): 245-252. doi: 10.1016/j.chemer.2011.12.002 [10] Moosavirad S M, Janardhana M R, Sethumadhav M S, et al. Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, CentralIran: Provenance, source weathering and tectonic setting[J]. Chemie dre Erde, 2011, 71(3): 279-288. doi: 10.1016/j.chemer.2010.10.001 [11] 朱志军, 陈洪德, 林良彪, 等. 川东南-湘西地区志留系小河坝组砂岩微量元素地球化学特征及意义[J]. 地质科技情报, 2010, 29(2): 24-30. doi: 10.3969/j.issn.1000-7849.2010.02.005Zhu Z J, Chen H D, Lin L B, et al. Signification andcharacteristic of the trace element ratios of the sandstone in Silurian Xiaoheba Formation in southeastern Sichuan Province and western Hunan Province[J]. Geological Science and Technology Information, 2010, 29(2): 24-30 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2010.02.005 [12] 腾格尔, 刘文汇, 徐永昌, 等. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200502008.htmTeng G R, Liu W H, Xu W C, et al. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment[J]. Advances In Earth Science, 2005, 20(2): 193-200 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200502008.htm [13] 叶加仁, 赵牛斌, 杨宝林, 等. 涠西南凹陷流沙港组烃源岩生产力及发育模式[J]. 地质科技通报, 2020, 39(1): 105-113. doi: 10.19509/j.cnki.dzkq.2020.0112Ye J R, Zhao N B, Yang B L, et al. Productivity and development model of source rock of the Liushagang Formation in the Weixinan Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 105-113 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0112 [14] 张春宇, 管树巍, 吴林, 等. 塔西北地区下寒武统碳酸盐岩地球化学特征及其古环境意义: 以舒探1井为例[J]. 地质科技通报, 2021, 40(5): 99-111. doi: 10.19509/j.cnki.dzkq.2021.0508Zhang C Y, Guan S W, Wu L, et al. Geochemical characteristics and its paleo-environmental significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 99-111 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0508 [15] Wang E Z, Wang Z J, Pang X Q, et al. Key factors controlling hydrocarbon enrichment in a deep petroleum system in a terrestrial rift basin—A case study of the uppermost member of the upper Paleogene Shahejie Formation, Nanpu Sag, Bohai Bay Basin, NE China[J]. Marine and Petroleum Geology, 2019, 107: 572-590. doi: 10.1016/j.marpetgeo.2019.05.027 [16] 范泓澈, 黄志龙, 庞雄奇, 等. 南堡凹陷古近系深层烃源岩分布特征及厚度预测[J]. 油气地质与采收率, 2011, 18(2): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201102006.htmFan H Z, Huang Z L, Pang X Q, et al. Evaluation approach and early-stage prediction on Paleogene hydrocarbon source rocks in Nanpu sag, Bohai BayBasin[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(2): 21-25 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201102006.htm [17] 曾棒, 刘小平, 刘国勇, 等. 陆相泥页岩层系岩相测井识别与预测: 以南堡凹陷拾场次洼为例[J]. 地质科技通报, 2021, 40(1): 69-79. doi: 10.19509/j.cnki.dzkq.2021.0103Zeng B, Liu X P, Liu G Y, et al. Logging identification and prediction of lithofacies of lacustrine shale system in Shichang Sub-Sag, Nanpu Depression[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 69-79 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0103 [18] 李素梅, 庞雄奇, 万中华. 南堡凹陷混源油分布与主力烃源岩识别[J]. 地球科学: 中国地质大学学报, 2011, 36(6): 1064-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106012.htmLi S M, Pang X Q, Wan Z H. Mixedoil distribution and source rock discrimination of the Nanpu Depression, Bohaibay Basin[J]. Earth Science : Journal of China University of Geosciences, 2011, 36(6): 1064-1072 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106012.htm [19] Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72. [20] 肖龙, 欧阳成甫, 汪劲草. 冀东青龙太古宙花岗岩系地质地球化学特征[J]. 桂林冶金地质学院学报, 1994, 14(4): 380-386. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX404.005.htmXiao L, Ouyang C P, Wang J C. The geology and geochemistry of the Archean granitoids in Qinglong, east Hebei[J]. Journal of Guilin College of Geology, 1994, 14(4): 380-386 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX404.005.htm [21] 檀国平. 燕山地区含金花岗岩岩石地球化学特征[J]. 沈阳黄金学院学报, 1997, 16(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI199701003.htmTan G P. Geochemical features of granites related with gold deposits in Yanshan Region[J]. Journal of Shenyang Institute of Gold Technology, 1997, 16(1): 24-29 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI199701003.htm [22] 李晓勇. 燕山地区中生代火山作用成因及其对深部过程的制约[D]. 广州: 中国科学院广州地球化学研究所, 2003.Li X Y. Mesozoic volcanism and constraint on deep geological process in Yanshan Area[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Science, 2003 (in Chinese with English abstract). [23] 李伍平. 燕山造山带中生代火山岩地球化学特征及其地球动力学背景[D]. 广州: 中国科学院广州地球化学研究所, 2002.Li W P. Geochemical characteristics and geodynamic background of Mesozoic volcanic rocks in Yanshan orogenic belt[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Science, 2002 (in Chinese with English abstract). [24] 李珍, 焦养泉, 刘春华, 等. 黄骅坳陷高柳地区重矿物物源分析[J]. 石油勘探与开发, 1998, 25(6): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK806.001.htmLi Z, Jiao Y Q, Liu C H, et al. Source analysis of heavy minerals in Gaoliu area, Huanghua Depression[J]. Petroleum Exploration and Development, 1998, 25(6): 5-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK806.001.htm [25] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114. [26] 崔滔, 焦养泉, 杜远生, 等. 黔北务正道地区铝土矿形成环境的古盐度识别[J]. 地质科技情报, 2013, 32(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201301012.htmCui T, Jiao Y Q, Du Y S, et al. Analysis on paleosalinity of sedimentary environment of bauxite in Wuchuan-Zheng'an-Daozhen area, northern Guizhou Province[J]. Geological Science and Technology Information, 2013, 32(1): 46-51 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201301012.htm [27] 夏雪飞, 张宁, 喻建新, 等. 渤海湾盆地南堡凹陷始新世—渐新世孢粉、藻类与地层对比[J]. 微体古生物学报, 2015, 32(3): 269-284. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201503005.htmXia F X, Zhang N, Yu J X, et al. Eocene-oligocene palynology and biostratigraphic correlation in the Nanpu Sag, Bohai bay basin, China[J]. Acta Micropalaeontologica Sinica, 2015, 32(3): 269-284 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201503005.htm [28] 刘传联, 徐金鲤. 生油古湖泊生产力的估算方法及应用实例[J]. 沉积学报, 2002, 20(1): 144-150. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200201023.htmLiu C L, Xu J L. Estimation method on productivity of oil-producing lake and a case study[J]. Acta Sedimentologica Sinica, 2002, 20(1): 144-150(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200201023.htm [29] 徐博, 曾文倩, 刁慧, 等. 东海盆地西湖凹陷平湖组微量稀土元素对古生产环境的指示意义[J]. 海洋地质与第四纪地质, 2020, 41(3): 72-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202103008.htmXu B, Zeng W Q, Diao H, et al. Trace rare earth element in the Pinghu Formation of Xihu Sag and its implications for paleo-production environment[J]. Marine Geology & Quaternary Geology, 2020, 41(3): 72-84 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202103008.htm [30] Guo Y C, Pang X Q, Dong Y X, et al. Hydrocarbon generation and migration in the Nanpu Sag, Bohai Bay Basin, eastern China: Insight from basin and petroleum system modeling[J]. Journal of Asian Earth Sciences, 2013, 77: 140-150. [31] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environmental and geochemistry of the upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestope, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99: 65-82. [32] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129. [33] Shields G, Stille P. Diagenetic constrains on the use of cerium anomalies as paleoseawater redox proxies: An isotopic and REE study of Cambrian phosphofites[J]. Chemical Geology, 2001, 175(1/2): 29-48. [34] Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296: 214-219. [35] 董月霞, 张宁, 周海民, 等. 南堡凹陷油田古近系碎屑重矿物的物源和构造意义[J]. 地质科技情报, 2008, 27(5): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200805003.htmDong Y X, Zhang N, Zhou H N, et al. Provenances and tectonic implications paleogene terrigenous heavy minerals in Nanpu Rifted Trough, eastern Hebei Province[J]. Geological Science and Technology Information, 2008, 27(5): 7-12 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200805003.htm [36] Harris N B, Freeman K H, Pancost R D, et al. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa[J]. AAPG Bulletin, 2004, 88(8): 1163-1184. -