Enrichment mechanism of organic matter in black rock series of the Niutitang Formation in Bahuang, Tongren, Guizhou
-
摘要:
中国扬子板块早寒武世发育一套富含有机质的黑色岩系, 黑色岩系不仅是烃源岩, 而且与众多金属、非金属矿床的形成有关, 但关于影响其有机质富集的主控因素尚存在较大争议。对贵州铜仁坝黄地区牛蹄塘组黑色岩系样品进行了总有机碳(TOC)、主量、微量及稀土元素测试, 解析了其有机质的分布规律、影响因素及其富集机理。研究结果表明: 黑色岩系有机碳含量从底部→下部-中部→上部呈现出高→低→高的变化趋势; 氧化还原指标Ni/Co、V/Cr、V/(V+Ni)和U/Th及判定盆地水体滞留程度的指标Mo/TOC, 分别指示了牛蹄塘组底部与上部富含有机质的炭质页岩、富多金属元素页岩形成于贫氧-缺氧、中等-强局限滞留环境, 而下部-中部磷矿层则形成于贫氧-富氧、中等滞留的沉积环境;
δ Ce表明研究区在早寒武世经历过一次海侵-海退的过程; Babio揭示了牛蹄塘组底部与上部的高古生产力以及下部-中部的中等-高古生产力; Ti/Al指示整体较弱的陆源输入; 稀土元素配分模式、δ Eu异常以及La/Yb-REE图解说明磷矿层和富多金属元素页岩层受到了热液活动的影响, 热液活动为富多金属元素页岩层有机质的富集带来了丰富的营养物质和还原的沉积环境, 而磷矿层形成于海平面上升期, 洋流上涌导致沉积环境充氧, 不利于有机质的保存, 故下部-中部磷矿层有机质含量较低。总之, 中等-高的古生产力是有机质富集的重要基础, 热水活动为局部地层(富多金属元素页岩层)有机质的富集创造了有利条件, 陆源碎屑输入对有机质富集的影响较小, 而最终制约牛蹄塘组黑色岩系有机质富集的主控因素是普遍还原滞留沉积环境, 有机质的富集更倾向于"保存模式"。Abstract:Objective A set of black rock series rich in organic matter developed in the Yangtze Plate of China in the Early Cambrian.
Methods To explore the main controlling factors affecting the enrichment of organic matter, the samples of the Niutitang Formation in Bahuang, Tongren Guizhou Province were tested for total organic carbon (TOC), major, trace and rare earth elements.
Results The results show that the organic carbon content of the black rock series show a trend of high→low→high from bottom→lower middle→upper. The redox indexes Ni/Co, V/Cr, V/(V+Ni) and U/Th and the index Mo/TOC for determining the retention degree of water in the basin indicate that the carbonaceous shale and polymetallic element shale rich in organic matter at the bottom and upper part of the Niutitang Formation are formed in oxygen-poor to anoxic, medium to strong limited retention environments. The lower middle phosphate rock layer is formed in oxygen-poor to oxygen-rich, medium retention sedimentary environment. The
δ Ce shows that the study area experienced a process of transgression regression in the Early Cambrian. Babio reveals the high paleoproductivity at the bottom and upper part of the Niutitang Formation and the medium to high paleoproductivity at the lower-middle part. The Ti/Al indicates weak terrigenous input as a whole. Rare earth distribution mode,δ Eu anomaly and La/Yb-REE diagram show that the phosphorus ore bed and metal-rich shale are affected by hydrothermal activity, which brings rich nutrients and reducing sedimentary environment for the enrichment of organic matter in metal rich shale. The phosphorus ore bed was formed in the period of sea level rise, and the upwelling of ocean currents led to the oxygenation of the sedimentary environment, which was not conducive to the preservation of organic matter. Therefore, the content of organic matter in the lower middle phosphorus-bearing formation is low.Conclusion The key factor restricting the enrichment of organic matter in the black rock series of the Niutitang Formation is the generally reducing and retained sedimentary environment, and the medium-high paleoproductivity is an important basis for the enrichment of organic matter. Hydrothermal activity creates favorable conditions for the enrichment of organic matter in local strata (polymetallic enrichment layer), and terrigenous clastic input has little impact on the enrichment of organic matter. The rise in sea level is an unfavorable factor for the enrichment of organic matter. It is the "comprehensive model" under the joint action of multiple factors that control the enrichment of organic matter in the black rock series of the Niutitang Formation.
-
图 1 铜仁坝黄地质略图(底图据文献[15]修编)
Figure 1. Geological sketch map of Bahuang, Tongren
图 4 坝黄牛蹄塘组微量元素蜘蛛图(PASS值引自文献[17])
Figure 4. Niutitang Formation spider map of trace elements in Bahuang
图 5 坝黄牛蹄塘组稀土元素配分模式图(NASC值引自文献[19])
Figure 5. Niutitang Formation diagram of the rare earth element partition pattern in Bahuang
图 7 w(Mo)-w(TOC)模式图(底图据文献[23])
Figure 7. Mo-TOC pattern diagram
图 9 黑色岩系La/Yb-w(ΣREE)图解(底图根据文献[47])
Figure 9. La/Yb-ΣREE content diagram for the black rock series
表 1 黑色岩系主量元素及TOC测试分析结果
Table 1. Main elements and TOC test analysis results of black rock series
样品编号 采样位置 w(TOC)/% P2O5 SiO2 Al2O3 Fe2O3 FeO MgO CaO Na2O K2O MnO TiO2 LOI 相关计算值 wB/% (Mo/TOC)/10-4 Ti/Al HBS-3 上部 8.47 0.06 73.34 7.80 2.48 0.53 0.53 0.10 0.84 1.84 0.01 0.33 12.66 9.09 0.05 HBS-2 13.77 0.10 59.39 14.06 1.50 0.93 1.04 0.11 0.54 3.60 0.02 0.65 18.99 13.87 0.05 HBS-1 7.41 0.36 54.23 14.95 6.09 1.77 0.89 0.16 1.45 3.31 0.01 0.75 17.78 46.29 0.06 WMC-5 7.22 0.21 64.81 11.15 5.48 0.76 1.07 0.09 0.10 3.09 <0.004 0.69 13.29 88.37 0.07 WMC-4 6.38 0.11 65.23 15.34 0.77 0.49 0.68 0.17 2.84 3.54 <0.004 0.90 10.41 14.01 0.07 YJDW-4 4.45 0.30 59.18 14.57 5.53 1.42 0.72 0.22 2.70 3.36 <0.004 0.82 12.55 24.27 0.06 YT-8-2 中部-下部 0.62 0.04 92.83 1.79 1.86 0.71 0.16 0.14 0.25 0.41 <0.004 0.09 2.43 16.94 0.05 YT-7-2 0.88 26.51 18.17 3.73 1.16 0.34 0.83 32.70 0.45 1.19 0.00 0.21 6.51 1.05 0.06 YT-7-1 0.38 0.70 63.35 12.81 4.08 0.72 1.50 1.79 1.17 4.69 0.01 0.69 9.11 9.58 0.06 YT-6-2 0.46 3.48 39.89 9.26 6.44 0.68 5.46 11.35 0.57 3.15 0.09 0.34 14.94 2.59 0.04 YT-5 3.91 0.12 19.58 1.59 0.54 0.40 15.93 24.11 0.11 0.41 0.19 0.06 37.32 0.12 0.04 YT-4-2 底部 4.82 0.14 60.01 5.25 1.80 0.71 5.32 7.77 0.38 1.62 0.20 0.24 17.24 2.68 0.05 YT-4-1 7.58 0.18 72.07 6.73 3.02 0.58 1.15 1.36 0.70 2.18 0.02 0.33 12.23 6.49 0.06 YT-3 6.09 0.19 73.92 5.68 2.74 0.51 1.74 2.34 0.46 1.95 0.03 0.29 10.64 4.73 0.06 注:①TOC由中国科学院地球化学研究所使用vario MACRO cube有机元素分析仪进行测试;②主量、微量及稀土元素由核工业北京地质研究院测试中心采用高分辨率电感耦合等离子体质谱仪(ICP-MS)进行测试分析;LOI.烧失量 表 2 黑色岩系微量元素测试分析及特征值计算结果
Table 2. Trace element test analysis and characteristic value calculation results of the black rock series
样品编号 采样位置 V Cr Co Ni Cu Sr Mo Ba Th U 相关计算值 wB/10-6 U/Th V/Cr V/(V+Ni) Ni/Co Babio/10-6 HBS-3 上部 691.00 64.00 7.10 94.50 63.40 72.40 77.00 2 572.00 5.10 33.20 6.51 10.80 0.88 13.31 2 571.97 HBS-2 1 745.00 384.00 1.46 94.30 55.10 69.20 191.00 4 864.00 11.60 54.80 4.72 4.54 0.95 64.59 4 863.94 HBS-1 823.00 96.90 17.40 293.00 83.50 298.00 343.00 3 852.00 11.30 98.20 8.69 8.49 0.74 16.84 3 851.94 WMC-5 2 651.00 151.00 0.38 80.80 48.70 67.40 638.00 8 290.00 10.60 35.10 3.31 17.56 0.97 214.32 8 289.96 WMC-4 690.00 96.60 0.60 30.80 34.00 97.60 89.30 7 012.00 13.40 46.60 3.48 7.14 0.96 51.25 7 011.94 YJDW-4 565.00 85.80 16.00 184.00 83.40 82.80 108.00 5 514.00 11.90 54.90 4.61 6.59 0.75 11.50 5 513.94 YT-8-2 中部-下部 121.00 46.50 0.85 28.80 50.60 33.30 10.50 834.00 1.36 3.50 2.57 2.60 0.81 33.88 833.99 YT-7-2 45.40 48.50 2.09 22.70 131.00 3 998.00 0.92 4 070.00 3.73 7.06 1.89 0.94 0.67 10.86 4 069.99 YT-7-1 116.00 202.00 6.07 70.30 174.00 333.00 3.64 3 439.00 9.29 5.10 0.55 0.57 0.62 11.58 3 438.95 YT-6-2 65.60 54.90 30.80 54.50 31.60 249.00 1.19 1 608.00 9.74 2.24 0.23 1.19 0.55 1.77 1 607.96 YT-5 17.60 7.52 4.36 16.90 7.90 295.00 0.45 609.00 3.01 0.54 0.18 2.34 0.51 3.88 608.99 YT-4-2 底部 307.00 53.30 5.72 40.10 46.90 244.00 12.90 1 103.00 6.26 9.32 1.49 5.76 0.88 7.01 1 102.98 YT-4-1 163.00 50.00 10.10 36.20 51.10 53.50 49.20 1 077.00 8.45 24.70 2.92 3.26 0.82 3.58 1 076.97 YT-3 96.70 36.40 9.72 26.10 38.20 56.20 28.80 1 168.00 6.55 14.30 2.18 2.66 0.79 2.69 1 167.98 注:生源钡Babio=Ba样品-Al样品×(Ba/Al)PAAS,PASS值引自文献[17] 表 3 黑色岩系稀土元素测试结果
Table 3. Test results of rare earth elements in black rock series
样品编号 采样位置 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 相关计算值 wB/10-6 δCe δEu w(∑REE)/10-6 LREE/HREE (La/Yb)N HBS-3 上部 21.90 39.90 5.13 20.80 3.81 1.30 2.81 0.48 2.36 0.57 1.40 0.29 1.72 0.25 0.88 1.16 102.72 4.02 8.59 HBS-2 45.90 74.50 9.48 35.20 5.95 2.02 5.34 0.95 4.97 1.09 3.14 0.68 4.67 0.58 0.82 1.07 194.46 3.60 6.63 HBS-1 47.60 81.80 10.80 47.60 10.10 2.60 7.98 1.34 6.24 1.14 2.95 0.54 3.40 0.40 0.84 0.86 224.49 3.88 9.45 WMC-5 37.90 52.70 6.12 20.80 3.61 2.56 3.25 0.60 3.21 0.74 2.07 0.42 2.71 0.34 0.76 2.24 137.02 3.36 9.44 WMC-4 47.30 75.10 9.44 34.30 5.85 2.55 5.00 0.86 4.16 0.83 2.24 0.46 3.00 0.39 0.81 1.41 191.48 4.66 10.64 YJDW-4 43.20 69.30 8.81 32.00 5.30 2.11 4.52 0.77 3.86 0.77 2.13 0.43 2.79 0.37 0.81 1.29 176.36 4.72 10.45 YT-8-2 中部-下部 6.12 7.99 1.56 6.42 1.38 0.48 1.49 0.33 1.90 0.43 1.21 0.24 1.59 0.21 0.61 1.02 31.36 1.21 2.60 YT-7-2 69.90 93.50 20.20 99.70 22.90 17.00 30.00 6.53 39.50 9.65 26.00 4.76 31.30 4.19 0.59 1.98 475.13 0.58 1.51 YT-7-1 48.90 53.30 9.24 36.70 7.39 1.94 6.55 1.21 6.59 1.43 3.95 0.74 5.23 0.71 0.56 0.84 183.88 2.27 6.31 YT-6-2 41.90 67.40 11.60 49.00 9.13 2.10 7.63 1.26 5.86 1.08 2.63 0.43 2.70 0.34 0.72 0.75 203.05 3.41 10.47 YT-5 24.40 23.60 5.71 25.20 4.52 0.98 3.80 0.66 2.98 0.51 1.19 0.17 1.03 0.12 0.47 0.70 94.87 3.91 15.99 YT-4-2 底部 22.70 50.30 5.08 20.40 3.69 0.84 3.39 0.60 3.00 0.65 1.73 0.32 2.08 0.26 1.08 0.71 115.03 3.50 7.37 YT-4-1 23.40 48.20 5.46 21.30 4.01 0.89 3.47 0.62 3.02 0.60 1.54 0.28 1.83 0.22 0.99 0.71 114.83 3.82 8.63 YT-3 19.50 46.60 4.55 18.10 3.46 0.85 3.10 0.54 2.63 0.51 1.35 0.23 1.54 0.19 1.15 0.78 103.15 4.13 8.55 注:① δCe=Ce/Ce*=2CeN/(LaN+PrN),CeN、LaN、PrN为元素球粒陨石标准化值[18]。② δEu=Eu/Eu*=2EuN/(SmN+GdN),EuN、SmN、GdN为元素球粒陨石标准化值[18]。③∑REE为元素La~Lu含量总和,LREE/HREE=∑(La~Eu)/∑(Gd~Lu)[19]。④(La/Yb)N=LaN/YbN、LaN、YbN为元素球粒陨石标准化值[18] -
[1] 范德廉, 张焘, 叶杰, 等. 中国的黑色岩系及其有关矿床[M]. 北京: 科学出版社, 2004.Fan D L, Zhang T, Ye J, et al. Black rock series and related deposits in China[M]. Beijing: Science Press, 2004(in Chinese). [2] 凌斯祥, 巫锡勇, 任勇, 等. 大巴山早寒武世黑色岩层稀土元素特征及沉积环境分析[J]. 地质科技情报, 2015, 34(5): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505006.htmLing S X, Wu X Y, Ren Y, et al. Analysis of REE geochemical characteristics and sedimentary environment of the Early Cambrian black rock strata in Daba Mountain[J]. Geological Science and Technology Information, 2015, 34(5): 36-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505006.htm [3] 赵帮胜, 李荣西, 王香增, 等. 鄂尔多斯盆地延长探区山西组泥页岩沉积地球化学特征及有机质保存条件分析[J]. 地质科技情报, 2016, 35(6): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606016.htmZhao B S, Li R X, Wang X Z, et al. Sedimentary environment and preservation conditions of organic matter analysis of Shanxi Formation mud shale in Yanchang exploration area, Ordos Basin[J]. Geological Science and Technology Information, 2016, 35(6): 109-117(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606016.htm [4] 胡亚, 陈孝红. 三峡地区前寒武纪-寒武纪转折期黑色页岩地球化学特征及其环境意义[J]. 地质科技情报, 2017, 36(1): 66-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701009.htmHu Y, Chen X H. Geochemistry of black shales during the Precambrian-Cambrian transition in Yangtze Gorges area and its implications for the paleoenvironment[J]. Geological Science and Technology Information, 2017, 36(1): 66-76(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701009.htm [5] 陈军, 杨瑞东, 高军波, 等. 贵州热水沉积矿床[J]. 地质科技情报, 2014, 33(5): 117-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405016.htmChen J, Yang R D, Gao J B, et al. Hydrothermal sedimentary deposits in Guizhou: A review[J]. Geological Science and Technology Information, 2014, 33(5): 117-126(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405016.htm [6] 王思贤, 冯彩霞, 刘燊, 等. 陕西紫阳下寒武统黑色岩系地球化学特征及成因研究[J]. 沉积学报, 2020, 38(5): 72-85. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005008.htmWang S X, Feng C X, Liu S, et al. Geochemistry of the Lower Cambrian black rock series in Ziyang, Shaanxi Province: Geochemical characteristics and petrogenesis[J]. Acta Sedimentologica Sinica, 2020, 38(5): 72-85(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005008.htm [7] 江永宏. 湘黔下寒武统黑色岩系有机成矿地球化学研究[J]. 西北地质, 2013, 46(3): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201303016.htmJiang Y H. The organic mineralization geochemistry research of the black-rock-series in the Lower Cambrian in Hunan and Guizhou Provinces[J]. Northwest Geology, 2013, 46(3): 160-170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201303016.htm [8] 韦恒叶, 陈代钊, 遇昊, 等. 鄂西地区中二叠统栖霞组下部烃源岩形成机理[J]. 地质科学, 2011, 46(1): 74-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101008.htmWei H Y, Chen D Z, Yu H, et al. Formation mechanism of lower Middle Permian Qixia Formation source rocks in western Hubei[J]. Chinese Journal of Geology, 2011, 46(1): 74-88(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101008.htm [9] 陈代钊, 汪建国, 严德天, 等. 扬子地区古生代主要烃源岩有机质富集的环境动力学机制与差异[J]. 地质科学, 2011, 46(1): 11-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101004.htmChen D Z, Wang J G, Yan D T, et al. Environmental dynamics and differences of organic matter enrichment in Paleozoic source rocks in the Yangtze area[J]. Chinese Journal of Geology, 2011, 46(1): 11-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101004.htm [10] Yin L M, Borjigin T, Knoll A H, et al. Sheet-like microfossils from hydrothermally influenced basinal cherts of the Lower Cambrian (Terreneuvian) Niutitang Formation, Guizhou, South China[J]. Palaeoworld, 2016, 26(1): 1-11. [11] 王川, 董田, 蒋恕, 等. 中扬子地区上奥陶统-下志留统五峰组-龙马溪组页岩纵向非均质性及主控因素[J]. 地质科技通报, 2022, 41(3): 108-121. doi: 10.19509/j.cnki.dzkq.2021.0053Wang C, Dong T, Jing S, et al. Vrttical heterogeneity and the main controlling factors of the Upper Otdovician-Lower Silurian Wufeng-Longmaxi shales in the Middle Yangtze region[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 108-121(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0053 [12] 孙中良, 王芙蓉, 韩元佳, 等. 潜江凹陷盐间页岩油储层孔隙结构分形表征与评价[J]. 地质科技通报, 2022, 41(4): 125-137. doi: 10.19509/j.cnki.dzkq.2021.0063Sun Z L, Wang F R, Han Y J, et al. Characterization and evaluation of fractal dimension of intersalt shale oil reservoirs in Qianjiang Depression[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 125-137(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0063 [13] 林文洲. 贵州寒武系沉积体系及层序地层学研究[D]. 成都: 成都理工学院, 2001.Lin W Z. Study on sedimentary system and sequence stratigraphy of Cambrian in Guizhou[D]. Chengdu: Chengdu University of Technology, 2001(in Chinese with English abstract). [14] 杨旭, 谢宏, 王志罡, 等. 铜仁坝黄磷矿稀土元素地球化学特征及其指示意义[J]. 中国稀土学报, 2018, 36(6): 760-768. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201806016.htmYang X, Xie H, Wang Z G, et al. Geochemical characteristics and indicative significance of rare earth elements in Tongrenba yellow phosphate deposit[J]. Chinese Journal of Rare Earth Sciences, 2018, 36(6): 760-768(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201806016.htm [15] 吴波. 贵州省磷(稀土)矿资源利用现状调查成果汇总报告[R]. 贵阳: 贵州省矿产资源利用现状调查项目管理办公室. 2011.Wu B. Summary report of investigation results on utilization status of phosphorus (rare earth) mineral resources in Guizhou Province[R]. Guiyang: Guizhou Province Mineral Resources Utilization Status Investigation Project Management Office, 2011(in Chinese). [16] 夏鹏, 付勇, 杨镇, 等. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系[J]. 地质学报, 2020, 94(3): 947-956. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202003019.htmXia P, Fu Y, Yang Z, et al. Relationship between sedimentary environment and organic matter enrichment of black shale in Zhenyuan Niutiutang Formation, northern Guizhou[J]. Acta Geologica Sinica, 2020, 94(3): 947-956(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202003019.htm [17] Taylor S R, Mclennan S M. The continental crust: Its composition and evolution//Anon. An examination of the geochemical record preserved in sedimentary rocks[M]. [S. l. ]: Blackwell Scientific Publish, 1985. [18] Evensen N M, Hamilton P J, Onions R K. Rare-earth abundances in chondritic meteorites[J]. Geochimica et Cosmochimica Acta, 1978, 42(8): 1199-1212. [19] Mclennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Rev. Mineral, 1989, 21: 169-200. [20] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253. [21] 尹锦涛, 俞雨溪, 姜呈馥, 等. 鄂尔多斯盆地张家滩页岩元素地球化学特征及与有机质富集的关系[J]. 煤炭学报, 2017, 42(6): 1544-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201706023.htmYin J T, Yu Y X, Jiang C F, et al. Geochemical characteristics of elements and their relationship with organic matter enrichment in Zhangjiatan shale, Ordos Basin[J]. Journal of China Coal Society, 2017, 42(6): 1544-1556(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201706023.htm [22] 李天义, 何生, 杨智. 海相优质烃源岩形成环境及其控制因素分析[J]. 地质科技情报, 2008, 27(6): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200806013.htmLi T Y, He S, Yang Z. The marine source rock formation conditions and control factors[J]. Geological Science and Technology Information, 2008, 27(6): 66-73 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200806013.htm [23] Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): 1016-1038. [24] 李红敬, 解习农, 林正良, 等. 四川盆地广元地区大隆组有机质富集规律[J]. 地质科技情报, 2009, 28(2): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200902017.htmLi H J, Xie X N, Lin Z L, et al. Organic matter enrichment of Dalong Formation in Guangyuan area of the Sichuan Basin[J]. Geological Science and Technology Information, 2009, 28(2): 101-106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200902017.htm [25] 腾格尔, 刘文汇, 徐永昌, 等. 缺氧环境及地球化学判识标志的探讨: 以鄂尔多斯盆地为例[J]. 沉积学报, 2004, 22(2): 365-372. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200402025.htmTenger, Liu W H, Xu Y C, et al. Discussion on anoxic environment and geochemical identification markers: A case study of Ordos Basin[J]. Acta Sedimentologica Sinica, 2004, 22(2): 365-372(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200402025.htm [26] Zhang C, Zhang W, Guo Y. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou[J]. Earth Science Frontiers, 2012, 19(1): 136-145. [27] 闫斌, 朱祥坤, 张飞飞, 等. 峡东地区埃迪卡拉系黑色页岩的微量元素和Fe同位素特征及其古环境意义[J]. 地质学报, 2014, 88(8): 1603-1615. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408020.htmYan B, Zhu X K, Zhang F F, et al. Trace elements and Fe isotopic characteristics of the Ediacaran black shale in the eastern Xixia area and its paleo-environmental significance[J]. Acta Geologica Sinica, 2014, 88(8): 1603-1615(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408020.htm [28] 赵岩, 刘池洋, 张东东, 等. 宁南盆地古近纪沉积岩地球化学特征对沉积环境的反映[J]. 地质科技情报, 2016, 35(5): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605004.htmZhao Y, Liu C Y, Zhang D D, et al. Geochemical characteristics of Paleogene sedimentary rocks in Ningnan Basin and their implications for sedimentary environments[J]. Geological Science and Technology Information, 2016, 35(5): 32-38(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605004.htm [29] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. [30] 李苗春, 姚素平, 丁海, 等. 湘西牛蹄塘组黑色岩系的地球化学特征及其油气地质意义[J]. 煤炭学报, 2013, 38(5): 857-863. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305026.htmLi M C, Yao S P, Ding H, et al. Geochemistry, paleontology and sedimentary environment significance of Niutitang Forma-tion in western Hunan Province of China[J]. Journal of China Coal Society, 2013, 38(5): 857-863(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305026.htm [31] Wilde P, Quinby-Hunt M S, Erdtmann B D. The whole-rock cerium anomaly: A potential indicator of eustatic sea-level changes in shales of the anoxic facies[J]. Sedimentary Geology, 1996, 101(1/2): 43-53. [32] 冯洪真, Erdtmann B D, 王海峰, 上扬子区早古生代全岩Ce异常与海平面长缓变化[J]. 中国科学: 地球科学, 2000, 30(1): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200001009.htmFeng H Z, Erdtmann B D, Wang H F. Early Paleozoic whole-rock Ce anomalies and secular changes in the upper Yangtze region[J]. Science in China: Earth Science, 2000, 30(1): 66-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200001009.htm [33] 蒲心纯, 周浩达, 王熙林. 中国南方寒武纪岩相古地理与成矿作用[M]. 北京: 地质出版社, 1993.Pu X C, Zhou H D, Wang X L. Cambrian lithofacies paleogeography and mineralization in South China[M]. Beijing: Geological Publishing House, 1993(in Chinese). [34] Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based on molybdenum-uranium covariation: Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 299: 46-58. [35] 蔺东林, 唐书恒, 郗兆栋, 等. 湘西北ZY3井五峰组页岩地球化学特征与有机质富集控制因素[J]. 现代地质, 2020, 34(6): 1144-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202006005.htmLin D L, Tang S H, Xi Z D, et al. Geochemical characteristics and controlling factors of organic matter enrichment in Wufeng Formation shale of Well ZY3, northwestern Hunan[J]. Geoscience, 2020, 34(6): 1144-1152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202006005.htm [36] 韦恒叶. 古海洋生产力与氧化还原指标: 元素地球化学综述[J]. 沉积与特提斯地质, 2012, 32(2): 76-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201202013.htmWei H Y. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201202013.htm [37] 丁文龙, 李超, 苏爱国, 等. 西藏羌塘盆地中生界海相烃源岩综合地球化学剖面研究及有利生烃区预测[J]. 岩石学报, 2011, 27(3): 280-298. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103025.htmDing W L, Li C, Su A G, et al. Study on the comprehensive geochemical cross section of Mesozoic marine source rocks and prediction of favorable hydrocarbon generation area in Qiangtan Basin, Tibeta[J]. Acta Petrologica Sinica, 2011, 27(3): 280-298(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103025.htm [38] Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181. [39] 李艳芳, 邵德勇, 吕海刚, 等. 四川盆地五峰组-龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报, 2015, 36(12): 1470-1483. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201512002.htmLi Y F, Shao D Y, Lü H G, et al. Relationship between elemental geochemical characteristics and organic matter enrichment in marine shales of Wufeng-Longmaxi Formations, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(12): 1470-1483(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201512002.htm [40] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129. [41] 王勋. Cu、Zn、Sr同位素在寒武纪生命大爆发和晚泥盆世生物大灭绝时期古海洋环境中的应用[D]. 北京: 中国地质大学(北京), 2018.Wang X. The applications of Cu, Zn and Sr isotopes in oceanic environments during the Cambrian explosion and Late Devonian mass extinction[D]. Beijing: China University of Geosciences (Beijing), 2018(in Chinese with English abstract). [42] 张兵, 唐书恒, 郗兆栋, 等. 湘西北五峰-龙马溪组层序地层特征及有机质富集探讨: 以XY-3井为例[J]. 地球科学进展, 2021, 36(10): 1026-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202110005.htmZhang B, Tang S H, Xi Z D, et al. Sequence stratigraphy characteristics and organic matter enrichment of Wufeng-Longmaxi Formation in northwestern Hunan Province: A case study of Well XY-3[J]. Earth Science Progress, 2021, 36(10): 1026-1038(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202110005.htm [43] 袁伟. 鄂尔多斯盆地延长组长7段富有机质页岩形成机理[D]. 北京: 中国石油大学(北京), 2018.Yuan W. Formation mechanism of the organic-rich shales in the 7th Member of Yanchang Formation, Ordos Basin[D]. Beijing: China University of Petroleum(Beijing), 2018(in Chinese with English abstract). [44] Michard A. Rare earth element systematics in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 745-750. [45] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: The ground rules[J]. Paleoceanography, 1990, 5(5): 823-833. [46] Sugitani K. Geochemical characteristics of Archean cherts and other sedimentary rocks in the Pilbara Block, western Australia: Evidence for Archean seawater enriched in hydrothermally-derived iron and silica[J]. Precambrian Research, 1992, 57(1): 21-47. [47] Kunzendorf H, Stoffers P, Gwozdz R. Regional variations of REE patterns in sediments from active plate boundaries[J]. Marine Geology, 1988, 84(3/4): 191-199. [48] 杨雪. 黔北地区下寒武统牛蹄塘组页岩沉积环境与有机质富集[D]. 北京: 中国地质大学(北京), 2020.Yang X. Sedimentary environment and organic matter enrichment of Lower Cambrian Niutitang Formation shale in northern Guizhou area[D]. Beijing: China University of Geosciences(Beijing), 2020: 55-56(in Chinese with English abstract). [49] Mclennan S M, Hemming S, Mcdaniel D K, et al. Geochemical approaches to sedimentation, provenance and tectonics[J]. Special Paper of the Geological Society of America, 1993, 284: 21-40. [50] Pedersen T F, Calvert S E. What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466. -