Types, element occurrence forms and enrichment mechanisms of rhenium metal deposits
-
摘要: 铼是一种战略性的稀散金属矿产,很少形成独立的矿床,多数以伴生元素的形式产出于斑岩型岩浆热液系统。研究表明,富铼矿床主要分布于活动大洋或大陆板块边缘,成因上主要与板块俯冲或碰撞作用紧密联系。富铼矿床成矿时代较新,主要为喜马拉雅期和燕山期。已报道的铼独立矿物约11种,主要包括自然铼、硫铼矿、铜铼矿、钌铼矿、氧化铼等,其中以硫铼矿为主。大多数的铼主要以类质同像的形式赋存于辉钼矿中,其次为黄铜矿、黄铁矿、黑钨矿等。富铼辉钼矿通常形成于中低温热液体系,辉钼矿中铼常显示不均匀性和多阶段性富集特征,最普遍的置换机制为Re4+↔Mo4+。自然界中,由于铼独特的化学行为,铼可以以气相、络合物或离子的形式迁移。在不同的物理化学(如温度、pH、氧逸度、硫逸度等)条件下,相对低温、低pH、还原环境更有利于铼的富集沉淀。为了进一步完善铼金属成矿理论,需着重加强铼的成矿物质来源、赋存状态以及铼富集机制的研究。Abstract: Rhenium is a strategic rare metal mineral that rarely forms independent deposits.Most of it is produced in the form of associated elements in the porphyry magmatic hydrothermal system.Studies have shown that rhenium-rich deposits are mainly distributed on the edges of active oceans or continental plates, and their genesis are mainly closely related to plate subduction or collision.The mineralization age of rich rhenium deposits is relatively new, mainly in the Himalayan and Yanshanian periods.There are about 11 independent rhenium minerals reported, mainly including natural rhenium, pyrite, copper rhenium, ruthenium rhenium, rhenium oxide, etc., among which rhenium sulfite is the main one.Most rhenium is mainly present in molybdenite in the form of isomorphism, followed by chalcopyrite, pyrite, wolframite. Rhenium-rich molybdenite is usually formed in a medium-low temperature hydrothermal system.Rhenium in molybdenite often shows heterogeneity and multi-stage enrichment characteristics.The most common replacement mechanism is Re4+↔Mo4+.In nature, due to the unique chemical behavior of rhenium, rhenium can migrate in the form of gas phase, complex or ion.Under different physical and chemical conditions (such as temperature, pH, oxygen fugacity, sulfur fugacity), relatively low temperature, low pH, and reducing environment are more conducive to the enrichment and precipitation of rhenium.The paper points out that in order to further improve the metallogenic theory of rhenium, it is necessary to focus on the research on the source, occurrence state and enrichment mechanism of rhenium.
-
Key words:
- rhenium /
- occurrence state /
- enrichment mechanism /
- mineralization
-
图 3 铼平均含量与钼平均品位(a)、铼金属量与钼金属量(b)关系图解(数据来源于文献中辉钼矿铼平均含量数据统计,见表 1)
Figure 3. Relationship between the average content of rhenium and molybdenum (a), and rhenium metal content and molybdenum metal content (b)
图 4 斑岩型矿床铼平均含量与钼平均品位关系图解(数据来源于文献中辉钼矿铼平均含量数据统计,见表 1)
Figure 4. Relationship between average rhenium content and average molybdenum grade in porphyry deposits
图 5 全球范围内富铼矿床辉钼矿平均铼含量和成矿年龄关系(数据来源于文献中辉钼矿铼平均含量数据统计,见表 1)
Figure 5. Average rhenium content of molybdenite and metallogenic age of rhenium-rich deposits in the world
表 1 世界典型富铼矿床地质特征
Table 1. Geological characteristics of typical rhenium-bearing deposits in the world
矿床 国家 类型 矿种 年龄/Ma 钼平均品位/% 辉钼矿铼最小值 辉钼矿铼最大值 铼平均含量 总矿石量/Mt 钼金属量/万t 铼平均品位/(g·t-1) 铼金属量/t 10-6 El Teniente 智利 斑岩型 Cu-Mo 5.4 0.019 25 1 154 420 20 731 393.9 0.133 2 757 El Salvador 智利 斑岩型 Cu 42 0.022 585 3 836 84.4 0.215 825 Chuquicamata 智利 斑岩型 Cu-Mo 33 0.04 93 262 265 21 277 851.1 0.177 3 766 Los Bronces 智利 斑岩型 Cu-Mo 4.7 0.02 104 898 265 16 816 336 0.088 1 480 Escondida 智利 斑岩型 Cu-Mo-Au 37 0.006 95 1 805 886 11 158 70.1 0.092 1 027 Los Pelambres 智利 斑岩型 Cu-Mo 9.5 0.015 450 820 600 7 458 111.9 0.150 1 119 Cerro Verde 秘鲁 斑岩型 Cu-Mo 62 0.01 3 060 3 497 3 280 2 528 25.3 0.116 293 Toquepala 秘鲁 斑岩型 Cu-Mo 57 0.04 387 1 496 600 2 320 92.8 0.400 928 aridad 墨西哥 斑岩型 Cu 53.7 0.025 570 1 800 44.5 0.235 423 Bagdad 美国 斑岩型 Cu-Mo 71.8 0.01 330 642 460 1 600 16.0 0.077 123 Bingham 美国 斑岩型 Cu-Mo 37 0.044 130 2 000 360 3 230 171.2 0.221 714 Santa Rita 美国 斑岩型 Cu 55.5 0.008 700 1200 800 3 030 24.2 0.107 324 Castle Dome 美国 斑岩型 Cu-Mo-Au 59 0.005 5 1 200 1 750 1 550 1 438 7.90 0.160 230 Copper Creek 美国 斑岩型 Cu-Mo 58 0.004 6 534 2 107 1 165 75 0.35 0.093 7 Ely 美国 斑岩型 Cu-Mo 110 0.01 1 250 2 840 2 020 754 7.54 0.267 201 Morenci 美国 斑岩型 Cu-Mo 56 0.095 100 4 100 1 180 6 470 61.5 0.072 466 San Manuel 美国 斑岩型 Cu-Mo 68 0.011 700 1 200 950 1 390 15.3 0.165 229 Climax 美国 斑岩型 Mo 0.2 10 80 13 800 160.0 0.043 35 Quartz Hill 美国 斑岩型 Mo 0.077 149 1 600 121.92 0.189 302 Butte 美国 斑岩型 Cu-Mo 0.028 240 5 220 146.2 0.112 585 Pebble 美国 斑岩型 Cu 89.5 0.024 329 2 070 1 100 5 940 144.3 0.446 2 649 Kitsault 加拿大 斑岩型 Mo 0.115 36 129 71 104 11.96 0.136 14 Red Bird 加拿大 斑岩型 Mo 0.065 6 43 25 75 4.89 0.027 2 德兴 中国江西 斑岩型 Cu 171 0.016 172.3 591.4 358 1825 27.2 0.057 105 塔前 中国江西 矽卡岩型 W-Mo 162 19.17 87.7 43.7 1.59 1 金溪熊家山 中国江西 斑岩型 Mo 155 171.3 614.5 450 铜坑嶂 中国江西 斑岩型 Mo 1 347 0.13 1 125 1 338 1 256 1 0.13 1 2 铜绿山 中国湖北 矽卡岩型 Cu-Au 137 261.4 665.4 385.7 0.68 3 鸡冠嘴 中国湖北 矽卡岩型 Cu-Au 138 425.7 1 152 734.9 Merlin 澳大利亚 石英脉型 Mo-Re 1528 1.5 496.6 1 107.3 836 6.4 9.6 26 166.4 Kirki(Pagoni Rachi) 希腊 斑岩型 Cu-Mo-Au 4 500 42 100 19 800 Maronia 希腊 斑岩型 Cu-Mo 29 900 28 800 7 260 Melitena 希腊 斑岩型 Cu-Mo 2 100 17 400 7 850 Borly 哈萨克斯坦 斑岩型 Cu 329 0.011 250 5 500 3 160 94 1.04 0.585 55 Kounrad 哈萨克斯坦 斑岩型 Cu 330 0.011 620 4 050 1 540 637 7.01 0.283 180 Aktogai 哈萨克斯坦 斑岩型 Cu-Mo 333 0.01 50 2 700 850 2 636 26.4 0.142 374 Kal′makyr 乌兹别克斯坦 斑岩型 Cu-Mo 290 0.006 700 2 000 1 500 2 000 12.0 0.150 300 Dastakert 亚美尼亚 斑岩型 Cu 22 0.048 130 300 220 36 1.70 0.167 6 Kadjaran 亚美尼亚 斑岩型 Cu 22 0.055 33 2 620 280 1 700 93.5 0.257 437 Elatsite 保加利亚 斑岩型 Cu-Mo 92 0.01 273 2 740 1 250 350 3.5 0.209 73 Maidanpek 塞尔维亚 斑岩型 Cu-Mo-Au 84 0.005 2 320 3 550 2 770 1 000 5.00 0.231 231 Muratdere 土耳其 斑岩型 Cu-Mo-Au 52 0.013 134 4 001 904 51 0.64 0.345 17.59 Sar Cheshmeh 伊朗 斑岩型 Cu-Mo 12.5 0.03 10.85 631 290 1 200 36.0 0.299 359 雄村 中国西藏 斑岩型 Cu-Mo-Au 166 1 615 12 182 4 146 努日 中国西藏 矽卡岩型 Cu-Mo-W 24.1 0.073 285 605.5 417 134.6 2.86 0.304 41 程巴 中国西藏 矽卡岩型 Cu-Mo 58.5 84.6 461.3 252 899.1 甲玛 中国西藏 斑岩-
矽卡岩型Cu-Mo-
Pb-Zn14.3 61.66 2 232 185.5 60.0 111 厅宫 中国西藏 斑岩型 Cu-Mo 16 225.7 922.7 486 1.05 5 拉抗俄 中国西藏 斑岩型 Cu 13 343.6 837.5 538 鸡公村 中国西藏 石英脉型 Mo 22.5 0.13 1410 1 691 1 525 48.8 6.34 3.47 166.3 驱龙 中国西藏 斑岩型 Cu-Mo 16 0.032 306 1 218.2 616 1 517 45.7 0.197 299 普朗 中国云南 斑岩型 Cu-Mo-Au 213 0.004 239.8 379.3 318.5 271.93 4.72 0.013 3 马厂箐 中国云南 斑岩型 Cu-Mo-Au 34.6 0.093 34.1 63.9 49.1 58.9 5.48 0.051 3 东戈壁 中国新疆 斑岩型 Mo 211.7 0.113 6.54 84.2 35.4 350.24 39.6 0.04 14 博罗科努 中国新疆 矽卡岩型 Cu-Mo 288.1 54.3 77.8 64.4 希勒库都克 中国新疆 斑岩型 Cu-Mo 329.2 118 572.1 317 Aksug 俄罗斯 斑岩型 Cu 403 0.015 460 337 5.06 0.116 39 Sora 俄罗斯 斑岩型 Cu 0.058 6 18 14 300 17.4 0.014 4.2 Tominskoe 俄罗斯 斑岩型 Cu 0.004 1 080 241 0.964 0.072 17 Voznesensk 俄罗斯 斑岩型 Cu-Mo-Au 380 1 100 10 100 3 400 白乃庙 中国内蒙古 斑岩型 Cu-Mo-Au 433.95 0.106 134.2 254.3 201.9 11.04 1.17 0.181 2 乌奴格吐山 中国内蒙古 斑岩型 Cu-Mo 171.6 0.015 215.8 919.8 512.8 435 45.0 0.077 33 Zuun Mod
Molybdenum蒙古 斑岩型 Cu-Mo 0.059 250 300 275 218 12.86 0.270 59 南泥湖-三道庄 中国陕西 矽卡岩型 W-Mo 144 0.143 9 51 23.33 1 033.6 147.8 0.033 34 金堆城 中国陕西 斑岩型 Mo 138 0.106 4.2 26 14.46 1 089 97.1 0.026 28 黄龙铺 中国陕西 碳酸盐脉型 Mo-Pb 222 0.1 71 260 135 120 12 0.133 16 沙坪沟 中国安徽 斑岩型 Mo-Cu 108.1 0.144 2.41 15.7 8.58 1582 245.9 0.012 20 肖家营子 中国辽宁 矽卡岩型 Mo-Fe 161.4 0.23 21.75 163.1 64.3 8.87 10.05 0.148 1 杨家杖子 中国辽宁 矽卡岩型 Mo 189 33.8 53.1 43.5 26.18 11 大黑山 中国吉林 斑岩型 Mo 169 0.081 24.15 42.8 33.7 1045 149.72 0.002 2 多宝山 中国黑龙江 斑岩型 Cu-Mo 474.5 0.02~0.03 353.9 729.4 492 951 15.22 0.149 142 注:数据来源于参考文献统计 表 2 全球铼的独立矿物
Table 2. Independent minerals of rhenium in the world
国家 发现地(矿床或岩体) 矿物名称 化学式 资料来源 哈萨克斯坦 兹卡兹甘砂岩型铜矿床 Dzjezkazganite CuReS2 文献[42] 哈萨克斯坦 兹卡兹甘砂岩型铜矿床 - Cu(Re, Mo)S4 文献[42-43] 俄罗斯 Voronov Bor、Rybozero矿床 锇铜铼矿(Osmium-cupreous rheniite) (Re, Cu, Os, Fe)1S2 文献[35] 日本、乌兹别克斯坦、德国 Kudryavyi火山的升华物;乌兹别克斯坦Sugraly砂岩型铀矿床;德国曼斯弗尔德铜矿的含铜页岩内 Rheniite ReS2 文献[14, 38-39] 芬兰 - Tarkianite (Cu, Fe)(Re, Mo)4S8 文献[47] 中国 丹巴杨柳坪铜镍硫化物矿床 - (Re, Cu, Os, Fe, Ni, Pb)1S2 文献[44] 中国 丹巴杨柳坪铜镍硫化物矿床 - (Re, Cu, Fe)1S2 文献[44] 美国 北亚利桑那州 氧化铼 Re2O7 文献[36, 39] 苏联 外贝加尔钨矿床 自然铼 Re或Re0 文献[36-37] - 陨石 钌铼矿 Re97Ru3 文献[36, 39] 美国 美国Stillwater超基性岩体 硫化铼 Re2S3 文献[41] 加拿大 加拿大Coldwell杂岩体 - (Re, Mo, Fe, Cu)S3与Re(Mo, Cu, Fe)2S3 文献[45] 瑞士或意大利 - - (Pb0.87Sr0.83Y0.43)(Ti14.4Fe6.05Re0.23Mn0.23)O38 文献[40] 瑞典 瑞典Njuggtraskliden富镍超基性岩;瑞典Solvbacktjarn加里东铀矿化石英岩 - Cu(Re3, Mo)S8 文献[46] 表 3 铼在各类岩石中的丰度
Table 3. Abundance of rhenium in various rocks
地质样品 wB/10-9 资料来源 范围 平均值 地核 291 文献[53] 原始地幔 0.27 文献[53] 亏损地幔 0.12 文献[58] 洋壳 0.96 文献[58] 陆壳 2 文献[59] 超基性岩(橄榄岩) 0.003~1.15 文献[60-61] 基性岩(辉长岩、辉绿岩、玄武岩) 0.36~1.5 文献[60-62] 中性岩(闪长岩、二长岩、安山岩) <0.5 文献[60, 62] 酸性岩(如花岗岩、斑岩、流纹岩) 0.22~1.14 文献[60-62] MORB 0.33~1.47 0.93 文献[58] OIB 0.1~0.642 0.35 文献[63] 普通页岩 9~51 文献[61] 黑色页岩 56~285 文献[61] 富含硫化物的矿化黑色页岩 最高可达33 000 文献[61] 缺氧沉积物 2~127 50 文献[65] 含氧沉积物 <0.1 文献[65] -
[1] Vinogradov A P. Average concentration of chemical elements in the chief types of igneous rocks of the crust of the Earth[J]. Geochemistry, 1962, 7, 555-571. [2] Stein H J, Markey R J, Morgan J W, et al. The remarkable Re-Os chronometer in molybdenite: How and why it works[J]. Terra Nova, 2001, 13(6): 479-486. doi: 10.1046/j.1365-3121.2001.00395.x [3] Xiong Y L, Wood S A. Hydrothermal transport and deposition of rhenium under subcritical conditions (up to 200℃) in light of experimental studies[J]. Econimic Geology, 2001, 96(6): 1429-1444. http://www.researchgate.net/publication/284908569_Hydrothermal_Transport_and_Deposition_of_Rhenium_under_Subcritical_Conditionsup_to_200_C_in_Light_of_Experimental_Studies [4] Xiong Y L, Wood S A. Experimental determination of the hydrothermal solubility of ReS2 and the Re-ReO2 buffer assemblage and transport of rhenium under supercritical conditions[J]. Geochemical Transactions, 2002, 3(1): 1-10. doi: 10.1186/1467-4866-3-1 [5] Berzina A N, Sotnikov V I, Economou-Eliopoulos M, et al. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia[J]. Ore Geology Review, 2005, 26(1/2): 91-113. http://www.sciencedirect.com/science/article/pii/S0169136804000496 [6] Voudouris P, Melfos V, Spry P, et al. Rhenium-rich molybdenite and rheniite in the Pagoni Rachi Mo-Cu-Te-Ag-Au prospect, northern Greece: Implications for the Re geochemistry of porphyry-style Cu-Mo and Mo mineralization[J]. Canadian Mineralogist, 2009, 47(5): 1013-1036. doi: 10.3749/canmin.47.5.1013 [7] Seo J H, Guillong M, Heinrich C A. Separation of molybdenum and copper in porphyry deposits: The roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon[J]. Economic Geology, 2012, 107(2): 333-356. doi: 10.2113/econgeo.107.2.333 [8] John, D A, Taylor R D. By products of porphyry copper and molybdenum deposits[J]. Society of Economic Geologists, 2016, 18(7): 137-164. http://www.researchgate.net/publication/336543134_By-Products_of_Porphyry_Copper_and_Molybdenum_Deposits [9] Babo J, Spandler C, Oliver N H S, et al. The high-grade Mo-Re Merlin deposit, Cloncurry district, Australia: Paragenesis and geochronology of hydrothermal alteration and ore formation[J]. Economic Geology, 2017, 112(2): 397-422. doi: 10.2113/econgeo.112.2.397 [10] U.S. Geological Survey(USGS). Mineral commodity summaries 2019: U.S. Geological Survey, 200P, https://doi.org/10.3133.70202434. [11] John D A, Seal R R, SEAL I I, et al. Critical mineral resources of the United States: Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, 2017, P1-P49, https://doi.org/10.3133/pp1802p. [12] 黄凡, 王登红, 王岩, 等. 中国铼矿成矿规律和找矿方向研究[J]. 地质学报, 2019, 93(6): 1253-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906007.htmHuang F, Wang D H, Wang Y, et al. Research on the metallogenic law and prospecting direction of rhenium deposits in China[J]. Acta Geologica Sinica, 2019, 93(6): 1253-1269(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906007.htm [13] 杨志明, 侯增谦, 周利敏, 等. 中国斑岩铜矿床中的主要关键矿产[J]. 科学通报, 2020, 65(33): 3653-3664. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033003.htmYang Z M, Hou Z Q, Zhou L M, et al. Main key minerals in porphyry copper deposits in China[J]. Chinese Science Bulletin, 2020, 65(33): 3653-3664(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033003.htm [14] Tessalina S G, Yudovskaya M A, Chaplygin I V, et al. Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 889-909. http://www.sciencedirect.com/science/article/pii/S0016703707006722 [15] Mathur R, Ruiz J R, Munizaga F M. Insights into Andean metallogenesis from the perspective of Re-Os analyses of sulfides[C]//Anon. SERNAGEOMIN, South American isotope conference, Pucon, Chile 2001, 4. [16] 周清, 姜耀辉, 廖世勇, 等. 德兴斑岩铜矿床研究新进展[J]. 地质论评, 2013, 59(5): 933-940. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201305015.htmZhou Q, Jiang Y H, Liao S Y, et al. New progress in the study of Dexing porphyry copper deposits[J]. Geological Review, 2013, 59(5): 933-940(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201305015.htm [17] 唐菊兴, 王友, 黎风佶, 等. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、辉钼矿Re-Os年龄的证据[J]. 矿床地质, 2010, 29(3): 461-475. doi: 10.3969/j.issn.0258-7106.2010.03.008Tang J X, Wang Y, Li F J, et al. The time limit of the formation of the main geological bodies of the Xiongcun copper-gold deposit in Xietongmen County, Tibet: Evidence of zircon U-Pb and molybdenite Re-Os ages[J]. Deposit Geology, 2010, 29(3): 461-475(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.03.008 [18] 黄典豪. 东秦岭地区钼矿床中辉钼矿的铼含量及多型特征[J]. 岩石矿物学杂志, 1992, 11(1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199201009.htmHuang D H. Rhenium content and polytype characteristics of molybdenite in molybdenite deposits in Eastern Qinling area[J]. Journal of Rock and Mineralogy, 1992, 11(1): 74-84(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199201009.htm [19] 李永峰, 王春秋, 白凤军, 等. 东秦岭钼矿Re-Os同位素年龄及其成矿动力学背景[J]. 矿产与地质, 2004, 18(6): 571-578. doi: 10.3969/j.issn.1001-5663.2004.06.014Li Y F, Wang C Q, Bai F J, et al. Re-Os isotopic ages of the molybdenum deposit in the East Qinling and its mineralization dynamic background[J]. Mineral Resources and Geology, 2004, 18(6): 571-578(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5663.2004.06.014 [20] 孟祥金. 安徽沙坪沟斑岩钼矿锆石U-Pb和辉钼矿Re-Os年龄[J]. 地质学报, 2012, 86(3): 486-494. doi: 10.3969/j.issn.0001-5717.2012.03.010Meng X J. Zircon U-Pb and molybdenite Re-Os ages of the porphyry molybdenum deposit in Shapinggou, Anhui[J]. Acta Geologica Sinica, 2012, 86(3): 486-494(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2012.03.010 [21] Aminzadeh B, Shahabpour J, Maghami M. Variation of rhenium contents in molybdenites from the Sar Cheshmeh porphyry Cu-Mo deposit in Iran[J]. Resource Geology, 2011, 61(3): 290-295. doi: 10.1111/j.1751-3928.2011.00165.x [22] 杨宗锋, 罗照华, 卢欣祥, 等. 关于辉钼矿中Re含量示踪来源的讨论[J]. 矿床地质, 2011, 30(4): 654-674. doi: 10.3969/j.issn.0258-7106.2011.04.006Yang Z F, Luo Z H, Lu X X, et al. Discussion on the trace source of Re content in molybdenite[J]. Deposit Geology, 2011, 30(4): 654-674(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.04.006 [23] 刘芳, 宋史刚, 丁振举, 等. 甘肃小柳沟钨钼矿床Re-Os、Ar-Ar同位素定年及其成矿意义[J]. 地质科技情报, 2013, 32(6): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306012.htmLiu F, Song S G, Ding Z J, et al. Re-Os and Ar-Ar isotopic dating of the Xiaoliugou tungsten-molybdenum deposit in Gansu and its metallogenic significance[J]. Geological Science and Technology Information, 2013, 32(6): 65-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306012.htm [24] 谢桂青, 赵海杰, 赵财胜, 等. 鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义[J]. 矿床地质, 2009, 28(3): 227-239. doi: 10.3969/j.issn.0258-7106.2009.03.001Xie G Q, Zhao H J, Zhao C S, et al. The molybdenite Re-Os isotopic age of the skarn copper-iron-gold deposit in the Tonglushan ore field in Southeast Hubei and its geological significance[J]. Deposit Geology, 2009, 28(3): 227-239(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2009.03.001 [25] 黄典豪, 杜安道, 吴澄宇, 等. 华北地台钼(铜)矿床成矿年代学研究: 辉钼矿铼-锇年龄及其地质意义[J]. 矿床地质, 1996, 15(4): 365-373. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ604.008.htmHuang D H, Du A D, Wu C Y, et al. Metallogenic chronology of molybdenum (copper) deposits on the North China platform: Molybdenite rhenium-osmium age and its geological significance[J]. Deposit Geology, 1996, 15(4): 365-373(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ604.008.htm [26] 代军治, 毛景文, 杜安道, 等. 辽西肖家营子钼(铁)矿床Re-Os年龄及其地质意义[J]. 地质学报, 2007, 81(7): 917-923. doi: 10.3321/j.issn:0001-5717.2007.07.006Dai J Z, Mao J W, Du A D, et al. Re-Os age of the Xiaojiayingzi molybdenum (iron) deposit in western Liaoning and its geological significance[J]. Acta Geologica Sinica, 2007, 81(7): 917-923(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.07.006 [27] 应立娟, 王登红, 唐菊兴, 等. 西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J]. 地质学报, 2010, 84(8): 1166-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htmYing L J, Wang D H, Tang J X, et al. Re-Os dating of molybdenite from Jiama copper polymetallic deposit in Tibet and its metallogenic significance[J]. Acta Geologica Sinica, 2010, 84(8): 1166-1174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm [28] 唐菊兴, 邓世林, 郑文宝, 等. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J]. 矿床地质, 2011, 30(2): 179-196. doi: 10.3969/j.issn.0258-7106.2011.02.002Tang J X, Deng S L, Zheng W B, et al. Exploration model of Jiama copper polymetallic deposit in Mozhugongka County, Tibet[J]. Deposit Geology, 2011, 30(2): 179-196(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.02.002 [29] 张苏坤, 郑有业, 张刚阳, 等. 西藏曲水县鸡公村石英脉型钼矿床成矿时代约束[J]. 矿床地质, 2013, 32(3): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303014.htmZhang S K, Zheng Y Y, Zhang G Y, et al. Mineralization age constraints of the quartz vein-type molybdenum deposit in Jigong Village, Qushui County, Tibet[J]. Deposit Geology, 2013, 32(3): 187-194(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303014.htm [30] 王健, 魏启荣, 次琼, 等. 西藏鸡公村钼矿区中酸性岩体的时代、岩石地球化学特征及构造背景[J]. 地学前缘, 2018, 25(6): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806014.htmWang J, Wei Q R, Ci Q, et al. Age, petrogeochemical characteristics and tectonic background of the acidic rock mass in the molybdenum mining area of Jigongcun, Tibet[J]. Earth Science Frontiers, 2018, 25(6): 153-164(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806014.htm [31] 王正其, 潘家永, 曹双林, 等. 层间氧化带分散元素铼与硒的超常富集机制探讨: 以伊犁盆地扎吉斯坦层间氧化带砂岩型铀矿床为例[J]. 地质论评, 2006, 52(3): 358-362. doi: 10.3321/j.issn:0371-5736.2006.03.017Wang Z Q, Pan J Y, Cao S L, et al. Discussion on the extraordinary enrichment mechanism of the dispersed elements rhenium and selenium in the interlayer oxidation zone: Taking the interlayer oxidation zone sandstone-type uranium deposit in the Yili Basin as an example[J]. Geological Review, 2006, 52(3): 358-362(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2006.03.017 [32] 曾爱花. 新疆511铀矿床7号采区U-Se-Re-Mo等元素分布特点[J]. 矿床地质, 2012, 31(1): 139-150. doi: 10.3969/j.issn.0258-7106.2012.01.012Zeng A H. Distribution characteristics of U-Se-Re-Mo and other elements in No. 7 mining area of Xinjiang 511 uranium deposit[J]. Deposit Geology, 2012, 31(1): 139-150(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.01.012 [33] Singer D A, Berger V I, Moring B C. Porphyry copper deposits of the world-database and grade and tonnage models[R/OL]. 2008: U.S. Geological Survey Open-File Report 2008-1155, 45 p., http://pubs.usgs.gov/of/2008/1155/. [34] Golden J, Mcmillan M, Downs R T, et al. Rhenium variations in molybdenite(MoS2): Evidence for progressive subsurface oxidation[J]. Earth and Planetary Sciences Letters, 2013, 366(2): 1-5. http://www.sciencedirect.com/science/article/pii/S0012821X13000514 [35] Lavrov O B, Kuleshevich L V. The first finds of rhenium minerals in Karelia[J]. Doklady Earth Sciences, 2010, 432(1): 598-601. doi: 10.1134/S1028334X10050107 [36] 杨敏之. 含铼矿床的新成因类型及其地质找矿方向[J]. 地质地球化学, 1983(1): 13-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198301003.htmYang M Z. New genetic types of rhenium-bearing deposits and their geological prospecting direction[J]. Geology and Geochemistry, 1983(1): 13-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198301003.htm [37] Bobrov A, Hurskiy D, Merkushyn I, et al. The first occurrence of native rhenium in natural geological systems[abs. ] [C/OL]. 33rd International Geological Congress, 6-14 August 2008, Oslo, Norway (abstracts): International Geological Congress, 33d, Oslo, Norway, 2008, accessed February 11, 2013, at http://www.cprm.gov.br/33IGC/1342433.html. [38] Seltmann R, Shatov V, Yakubchuk A. Mineral deposits database and thematic maps of Central Asia, scale 1: 1500000: Explanatory Notes to ArcView 3.2 and Mapinfo 7 GIS packages[R]. London: Centre for Russian and Central Asian Mineral Studies, NHM London, 2005. [39] 王瑞江, 王登红, 李健康, 等. 稀有稀土稀散矿产资源及其开发利用[M]. 北京: 地质出版社, 2015.Wang R J, Wang D H, Li J K, et al. Rare rare earth mineral resources and their development and utilization[M]. Beijing: Geological Publishing House, 2015(in Chinese). [40] Sarp H, Bertran J, Deferne J, et al. A complex rhenium-rich titanium and iron oxide of the Crichtonitesenaite Group[J]. Neues Jahrbuch Fuer Mineralogie. Monatshefte, 1981, 10(1): 433-442. http://www.researchgate.net/publication/321865030_A_complex_rhenium-rich_titanium_and_iron_oxide_of_the_crichtonite-_senaite_group [41] Volborth A. Tarkian M, Stumpfl E F, et al. A survey of the Pd-Pt mineralization along the 35 km strike of the J.M. Reef, Stillwater complex, Montana[J]. Canadian Mineralogist, 1986, 24(1): 329-346. http://pubs.geoscienceworld.org/canmin/article-pdf/24/2/329/3446137/329.pdf [42] Poplavko E M, Marchukova I D, Zak C S. A rhenium mineral in the ores of the Dzhezkazgan deposits(In Russian)[J]. Doklady Akad. Nauk. SSSR, 1962, 146: 433-436. [43] Box S E, Syusyura B, Seltmann R, et al. Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu Basin, Central Kazakhstan[J]. Economic Geology, 2017, 16: 303-328. http://www.researchgate.net/publication/345822783_Dzhezkazgan_and_Associated_Sandstone_Copper_Deposits_of_the_Chu-Sarysu_Basin_Central_Kazakhstan [44] 戴婕, 杜谷, 徐金沙, 等. 丹巴杨柳坪地区铜镍硫化物矿床发现铼矿物[J]. 矿物学报, 2015, 35(1): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501017.htmDai J, Du G, Xu J S, et al. Discovery of rhenium minerals from copper-nickel sulfide deposits in Yangliuping area of Danba[J]. Acta Mineralogy Sinica, 2015, 35(1): 107-112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501017.htm [45] Tarkian M, Housley R M, Volborth A, et al. Unnamed Re-Mo-Cu sulfide from Stillwater complex, and crystal chemistry of its synthetic equivalent spinel type (Cu, Fe)(Re, Mo)4S8[J]. European Journal of Mineralogy, 1991, 3(6): 977-982. doi: 10.1127/ejm/3/6/0977 [46] Ekstrom M, Halenius U. A new rhenium-rich sulphide from two Swedish localities[J]. Neues Jahrbuch für Mineralogie-Monatshefte, 1982, 1982(1): 6-10. http://www.researchgate.net/publication/322437039_A_new_rhenium-rich_sulphide_from_two_Swedish_localities [47] Kojonen K K, Roberts A C, Iaomäki O P, et al. Tarkianite, (Cu, Fe) (Re, Mo)4S8: A new mineral species from the Hitura mine, Nivala, Finland[J]. The Canadian Mineralogist, 2004, 42(4): 539-544. http://www.researchgate.net/publication/237733371_Tarkianite_CuFeReMo4S-8_a_new_mineral_species_from_the_Hitura_Mine_Nivala_Finland [48] 肖静珊, 李峰, 杨帆, 等. 云南澜沧老厂斑岩钼(铜)矿体中Re-Mo关系研究[J]. 地质科技情报, 2011, 30(2): 97-101. doi: 10.3969/j.issn.1000-7849.2011.02.016Xiao J S, Li F, Yang F, et al. Research on Re-Mo relationship in Laochang porphyry molybdenum (copper) orebody in Lancang, Yunnan[J]. Geological Science and Technology Information, 2011, 30(2): 97-101(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.02.016 [49] Rathkopf C, Mazdab F, Barton I, et al. Grain-scale and deposit-scale heterogeneity of redistribution in molybdenite at the Bagdad porphyry Cu-Mo deposit, Arizona[J]. Journal of Geochemical Exploration, 2017, 178(5): 45-54. http://www.geo.arizona.edu/sites/www.geo.arizona.edu/files/Rathkopf2017BagdadReDist.pdf [50] McFall K, Roberts S, McDonald I. Rhenium enrichment in the Muratdere Cu-Mo (Au-Re) porphyry deposit, Turkey: Evidence from stable isotope analyses (δ34S, δ18O, δD) and laser ablation-inductively coupled plasma-mass spectrometry analysis of sulfides[J]. Economic Geology, 2019, 114(7): 1443-1466. doi: 10.5382/econgeo.4638 [51] Ciobanu C L, Cook N J, Kelson C R, et al. Trace element heterogeneity in molybdenite fingerprints stages of mineralization[J]. Chemical Geology, 2013, 347(3): 175-189. http://www.sciencedirect.com/science/article/pii/S0009254113001253 [52] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 地质出版社, 1984.Liu Y J, Cao L M, Li Z L, et al. Elemental geochemistry[M]. Beijing: Geological Publishing House, 1984(in Chinese). [53] 涂光炽, 高振敏, 胡瑞忠, 等. 分散元素地球化学及其成矿机制[M]. 北京: 地质出版社, 2004.Tu G C, Gao Z M, Hu R Z, et al. Geochemistry of dispersed elements and their metallogenic mechanism[M]. Beijing: Geological Publishing House, 2004(in Chinese). [54] Ivanov V V, Poplavko E M, Corokhova V N. The geochemistry of rhenium[M]. International Geology Review, 1972, 14(1): 1-105. [55] 定立, 赵元艺, 刘妍, 等. 江西永平铜矿外围护架山钻孔ZK725岩矿相学特征及意义[J]. 地质学报, 2013, 87(11): 1715-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311007.htmDing L, Zhao Y Y, Liu Y, et al. Petrographic characteristics and significance of Borehole ZK725 in the outer Hujiashan of Yongping Copper Mine, Jiangxi Province[J]. Acta Geologica Sinica, 2013, 87(11): 1715-1730(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311007.htm [56] Helz G R, Dolor M K. What regulates rhenium deposition in euxinic basins?[J]. Chemical Geology, 2012, 304/305(4): 131-141. http://www.sciencedirect.com/science/article/pii/S0009254112000824 [57] 黎彤, 倪守斌. 地球和地壳的化学元素丰度[M]. 北京: 地质出版社, 1990.Li T, Ni S B. The abundance of chemical elements in the Earth and the crust[M]. Beijing: Geological Publishing House, 1990(in Chinese). [58] Sun W D, Arculus R J, Bennett V C, et al. Evidence for rhenium enrichment in the mantle wedge from submarine arc-like volcanic glasses (Papua New Guinea)[J]. Geology, 2003, 31(10): 845-848. doi: 10.1130/G19832.1 [59] Li Y. Chalcophile element partitioning between sulfide phases and hydrous mantle melt: Applications to mantle melting and the formation of ore deposits[J]. Journal of Asian Earth Sciences, 2014, 94(8): 77-93. http://www.sciencedirect.com/science/article/pii/S1367912014003526 [60] Morgan J W, Lovering J F. Rhenium and osmium aboundances in some igneous and metamorphic rocks[J]. Earth and Planetary Science Letters, 1967, 3(3): 219-224. http://www.sciencedirect.com/science/article/pii/0012821X67900416 [61] Morgan J W. Rhenium[C]//Marshall C P, Fairbridge R W. Encyclopedia of geochemistry. Kluwer: Academic Publishers, 1999. [62] Morris D F C, Fifield F W. Rhenium content of rocks[J]. Geochimica et Cosmochimica Acta, 1961, 25(3): 232-233. doi: 10.1016/0016-7037(61)90079-5 [63] Hauri E H, Hart S R. Rhenium abundances and systematics in oceanic basalts[J]. Chemical Geology, 1997, 139(1): 185-205. http://www.sciencedirect.com/science/article/pii/S0009254197000351 [64] Sun W D, Bennett V C, Kamenetsky V S. The mechanism of Re enrichment in arc magmas: Evidence from Lau Basin basaltic glasses and primitive melt inclusions[J]. Earth and Planetary Science Letters, 2004, 222(1): 101-114. doi: 10.1016/j.epsl.2004.02.011 [65] Koide M, Hodge V F, Yang J S, et al. Some comparative marine chemistries of rhenium, gold silver and molybdenum[J]. Application Geochemistry, 1986, 1(6): 705-714. doi: 10.1016/0883-2927(86)90092-2 [66] Ravizza G, Turekian K K, Hay B J. The geochemistry of rhenium and osmium in recent sediments from Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3741-3752. doi: 10.1016/0016-7037(91)90072-D [67] Colodner D, Sachs J, Ravizza G, et al. The geochemical cycle of rhenium: A reconnaissance[J]. Earth and Planetary Science Letters, 1993, 117(1/2): 205-221. http://www.sciencedirect.com/science/article/pii/0012821X9390127U [68] Colodner D, Edmond J, Boyle E. Rhenium in the Black Sea: Comparation with molybdenum and uranium[J]. Earth and Planetary Science Letters, 1995, 131(1/2): 1-15. http://www.sciencedirect.com/science/article/pii/0012821X9500010A [69] Crusius J, Calvert S E, Pedersen T F, et al. Rhenium and molybdenum enrichment in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/4): 65-78. http://www.sciencedirect.com/science/article/pii/S0012821X9600204X [70] Sun W D, Bennett V C, Eggins S M, et al. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas[J]. Nature, 2003, 422: 294-297. doi: 10.1038/nature01482 [71] Mao J W, Zhang Z, Zhang Z, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou (Mo) deposit in the northern Qilian Mountains and its geological significance[J]. Geochimica et Cosmochimica Acta, 1999, 63(11): 1815-1818. http://www.sciencedirect.com/science/article/pii/S0016703799001659 [72] Li Y. Comparative geochemistry of rhenium in oxidized arc magmas and MORB and rhenium partitioning during magmatic differentiation[J]. Chemical Geology, 2014, 386(8): 101-114. http://www.sciencedirect.com/science/article/pii/S000925411400388X [73] Bernard A, Symonds R B, Rose W I. Volatile transport and deposition of Mo, W and Re in high temperature magmatic fluids[J]. Application Geochemistry, 1990, 5(3): 317-326. doi: 10.1016/0883-2927(90)90007-R [74] Xiong Y L, Wood S A, Kruseewski J. Hydrothermal transportand deposition of rhenium under subcritical conditions revisited[J]. Economic Geology, 2006, 101(2): 471-478. doi: 10.2113/gsecongeo.101.2.471 [75] 李娜, 张振芳, 王靓靓, 等. 战略性新兴产业若干关键矿产开发应用与展望[M]. 北京: 地质出版社, 2020.Li N, Zhang Z F, Wang L L, et al. Development, application and prospects of several key minerals in strategic emerging industries[M]. Beijing: Geological Publishing House, 2020(in Chinese). [76] 黄诚, 张德会. 热液金矿成矿元素运移和沉淀机理研究综述[J]. 地质科技情报, 2013, 32(4): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304025.htmHuang C, Zhang D H. A review of the research on the migration and precipitation mechanism of metallogenic elements in hydrothermal gold deposits[J]. Geological Science and Technology Information, 2013, 32(4): 162-170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304025.htm [77] Morford J L, Martin W R, Carney C M. Rhenium geochemical cycling: Insights from continental margins[J]. Chemical Geology, 2012, 324/325(5): 73-86. http://www.sciencedirect.com/science/article/pii/S0009254111005031 [78] Sheen A I, Kendall B, Reinhard C T, et al. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic Ocean Anoxia[J]. Geochimica et Cosmochimica Acta, 2018, 227(1): 75-95. http://www.sciencedirect.com/science/article/pii/S0016703718300668 [79] Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233-2242. doi: 10.1016/S0016-7037(99)00433-0 [80] Frondel J W, Wickman F E. Molybdenite polytypes in theory and occurrence: II. Some naturally-occurring polytypes of molybdenite[J]. American Mineralogist, 1970, 55(11/12): 1857-1875. http://www.researchgate.net/publication/284651884_Molybdenite_polytypes_in_theory_and_occurrence_II_Some_naturally-occurring_polytypes_of_molybdenite [81] Newberry R J J. Polytypism in molybdenite(II): Relationships between polytypism, ore deposition, alteration stages and rhenium contents[J]. American Mineralogist, 1979, 64(5): 768-775. http://ci.nii.ac.jp/naid/10030174540 [82] Wang S M, Zhang J Z, He D W, et al. Sulfur-catalyzed phase transition in MoS2 under high pressure and temperature[J]. Journal of Physics and Chemistry of Solids, 2014, 75(1): 100-104. doi: 10.1016/j.jpcs.2013.09.001 [83] Mccandless T E, Ruiz J R, Campbell A R. Rhenium behavior in molybdenite in hypogene and near-surface environments: Implications for Re-Os geochronometry[J]. Geochimica et Cosmochimica Acta, 1993, 57(4): 889-905. doi: 10.1016/0016-7037(93)90176-W -