Zircon U-Pb geochronology of the Gongzhu Co gneiss in the Zhongba block from Ali, Tibet and its geological significance
-
摘要:
仲巴地块是藏南雅鲁藏布江缝合带西段的重要构造单元, 对于研究冈瓦纳大陆北缘微地块的构造属性与古地理重建具有重要意义。目前, 对于该地块内部是否存在陆块基底尚未有统一认识。通过野外观测、岩石地球化学和锆石U-Pb年代学分析, 本研究在仲巴地块中段公珠错南地区识别出一套黑云斜长片麻岩, 其
w (SiO2)为64.09%~69.87%,w (Al2O3)为12.18%~18.30%,w (TiO2)为0.55%~0.79%,w (K2O)为2.53%~3.54%, LREE相对富集, 轻重稀土分馏明显, 推测其原岩以长石砂岩为主, 形成于活动大陆边缘环境。锆石U-Pb年代学分析结果显示, 其继承核年龄峰值为2500, 1600, 950Ma, 最年轻的谐和年龄为630Ma。此外, 还获得变质锆石的加权平均年龄为550Ma。根据上述结果, 研究认为公珠错片麻岩形成于新元古代晚期(630~550Ma), 其变形-变质程度较高, 能够代表仲巴地块的陆块基底, 并进一步证明仲巴地块是印度大陆北缘的组成部分。由此, 本次研究为明确雅鲁藏布江缝合带西段仲巴地块的陆块基底特征及构造属性提供了直接的地质证据。Abstract:The Zhongba block, an important tectonic unit of the western segment of the Indus-Tsangpo suture zone (ITSZ) in southern Tibet, is significant for determining tectonic affinity and paleogeographic reconstruction along the northern margin of the Gondwana. However, whether the continental basement of the Zhongba block exists is still a controversial issue. In this contribution, integrated with field observations, whole-rock geochemistry and zircon geochronology allow us to identify a biotite-plagioclase gneiss suite in the southern region of Gongzhu Co from the central Zhongba block. The gneiss has 64.09%-69.87% SiO2, 12.18%-18.30% Al2O3, 0.55%-0.79% TiO2 and 2.53%-3.54% K2O. It is enriched in light rare earth elements (LREEs) and has a high LREE/HREE ratio.It was proposed that the protoliths of the gneiss may be sedimentary rocks, dominated by feldspar sandstones, which had formed in an active continental marginal environment. Zircon dating result shows that the peak ages of inherited zircon cores are 950 Ma, 1600 Ma, and 2500 Ma, respectively, with the youngest age of ~630 Ma. Moreover, the metamorphic zircon rim yielded a weighted mean age of ~550 Ma. Based on these results, the Gongzhu Co gneiss was supposed to form in the Late Neoproterozoic (630-550 Ma) and subsequently underwent a high-grade metamorphism. Combined with previous results, the Gongzhu Co gneiss should represent the continental basement of the Zhongba block. This further implies that the Zhongba block belonged to northern margin of the Indian continent. Therefore, this study provides vigorous evidence for clarifying the characteristics of continental basement as well as tectonic affinity of the Zhongba block.
-
Key words:
- zircon geochronology /
- the Indus-Tsangpo suture zone /
- Zhongba Block /
- Gongzhu Co /
- gneiss
-
图 3 公珠错片麻岩稀土元素球粒陨石标准化配分图(a)与微量元素原始地幔标准化蛛网图(b)(标准化数据根据文献[29])
Figure 3. Chondrite-normalized REE patterns (a) and primitive-mantle-normalized trace element spidergram (b) of the Gongzhu Co gneiss
图 7 公珠错片麻岩原岩类型判别图解(A底图据文献[32]; B底图据文献[31, 34])
K=100*[K2O/(K2O+Na2O)]; A=100*Al2O3/(Al2O3+CaO+K2O+Na2O)
Ⅰ.石英砂岩; Ⅱ.少量矿物砂岩、石英质砂岩; Ⅲ.复矿物砂岩; Ⅳ.长石砂岩; Ⅴ.钙质砂岩和含铁砂岩; Ⅵ.化学上弱分异的沉积物(a.主要为杂砂岩; b.主要为复矿物粉砂岩; c.泥质砂岩及寒带和温带气候的陆相黏土); Ⅶ.化学上中等分异的黏土、寒带和温带气候的海相和陆相黏土; Ⅷ.潮湿气候带化学强分异的黏土; Ⅸ.碳酸盐质黏土和含铁黏土; Ⅹ.泥灰岩; Ⅺ.硅质泥灰岩和含铁砂岩; Ⅻ.含铁石英岩; xi为其余组分Figure 7. Discrimination of protolith types for the Gongzhu Co gneiss
图 8 片麻岩构造环境判别图解(底图据文献[38])
A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘
Figure 8. Tectonic discrimination diagrams for the gneiss
表 1 公珠错片麻岩主量元素与微量元素分析结果
Table 1. Major and trace element data of the Gongzhu Co gneiss
样品编号 15SB-1 15SB-2 15SB-3 PM043-0-1 岩石名称 黑云斜长
片麻岩黑云斜长
片麻岩黑云斜长
片麻岩混合
片麻岩SiO2 68.40 64.09 69.87 68.00 TiO2 0.68 0.79 0.55 0.10 Al2O3 17.30 16.12 12.18 18.30 Fe2O3 6.42 5.79 6.57 1.15 MnO 0.12 0.11 0.11 0.03 MgO wB/% 1.54 2.42 2.84 0.36 CaO 0.11 4.00 0.72 1.86 Na2O 0.78 2.88 2.36 7.35 K2O 2.66 2.53 3.54 1.66 P2O5 0.05 0.18 0.09 0.10 LOI 1.80 0.72 0.86 0.45 总量 99.86 99.63 99.69 99.36 TFeO 5.78 5.21 5.91 1.03 Sc 22.0 14.7 10.9 3.10 V 105.00 80.91 70.81 4.00 Cr 87.00 83.22 226.23 5.00 Co 12.2 15.2 10.4 1.3 Ni 80.80 37.27 35.20 7.30 Cu 21.70 7.99 2.45 1.60 Zn 43.0 102 207 19.0 Ga 17.6 23.1 23.6 22.8 Rb 131.00 217.19 451.42 83.00 Sr 66.10 238.45 37.98 102.00 Y 18.80 37.12 26.46 96.70 Zr 100.00 204.89 141.26 169.00 Nb 17.10 17.78 21.98 12.40 Cs 8.01 21.4 35.4 4.54 Ba 425.00 553.80 120.46 76.40 La 37.40 49.15 31.38 85.80 Ce wB/10-6 80.10 93.76 61.51 173.00 Pr 7.54 10.80 6.86 18.45 Nd 25.00 40.34 27.39 57.10 Sm 4.92 7.92 5.68 13.60 Eu 1.03 1.44 0.94 0.84 Gd 3.91 6.41 4.84 11.70 Tb 0.55 1.02 0.74 2.03 Dy 3.39 6.20 4.71 13.00 Ho 0.69 1.26 0.88 2.91 Er 2.03 3.47 2.39 9.55 Tm 0.30 0.50 0.34 1.53 Yb 1.83 3.49 2.36 10.10 Lu 0.29 0.50 0.34 1.49 Hf 2.80 5.36 3.84 6.70 Ta 1.13 1.47 2.23 1.48 Pb 16.20 15.03 15.71 42.80 Th 14.40 21.87 13.27 74.00 U 1.65 3.21 4.71 8.19 ΣREE 168.98 226.26 150.38 401.10 LREE/HREE 12.01 8.90 8.05 6.67 (La/Yb)N 14.66 10.11 9.52 6.09 δEu 0.69 0.60 0.54 0.20 δCe 1.10 0.95 0.98 1.02 DF -4.85 0.53 -3.37 8.09 表 2 公珠错地区片麻岩LA-ICP-MS锆石U-Pb定年结果
Table 2. LA-ICP-MS zircon U-Pb dating results for the Gongzhu Co gneiss
样品
编号Pb U Th Th/U 同位素比值 同位素年龄/Ma 谐和
度/%wB/10-6 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 黑云斜长片麻岩15SB-1 -01 295 1 971 356 0.18 0.065 9 0.001 1 1.000 3 0.017 1 0.109 6 0.001 0 806 35.2 704 8.7 670 5.7 95 -02 366 1 115 608 0.55 0.071 2 0.001 4 1.208 1 0.026 7 0.122 7 0.001 8 965 43.5 804 12.3 746 10.3 92 -03 428 1 973 235 0.12 0.078 4 0.001 1 1.856 3 0.028 7 0.170 7 0.001 4 1 167 27.8 1 066 10.2 1 016 7.9 95 -04 186 622 243 0.39 0.072 0 0.001 4 1.489 4 0.027 6 0.149 9 0.001 5 987 43.5 926 11.3 900 8.4 97 -05 344 239 136 0.57 0.205 2 0.003 2 15.140 3 0.240 0 0.533 6 0.005 2 2 868 25.3 2 824 15.1 2 757 21.8 97 -06 558 1 575 783 0.50 0.071 6 0.001 2 1.495 8 0.027 7 0.150 9 0.001 6 976 35.2 929 11.3 906 9.1 97 -07 171 658 155 0.24 0.074 1 0.001 5 1.736 7 0.040 8 0.169 9 0.002 7 1 056 38.0 1 022 15.1 1 011 15.1 98 -08 302 271 445 1.64 0.076 5 0.002 0 1.954 7 0.050 5 0.185 1 0.002 1 1 109 50.8 1 100 17.3 1 095 11.3 99 -09 611 1 526 943 0.62 0.068 6 0.001 1 1.388 2 0.021 7 0.146 2 0.001 0 887 33.3 884 9.2 880 5.9 99 -10 335 486 460 0.95 0.078 5 0.001 5 2.023 6 0.040 6 0.186 2 0.001 6 1 161 38.9 1 123 13.6 1 101 8.7 97 -11 318 252 147 0.59 0.164 1 0.002 7 10.813 4 0.205 5 0.477 1 0.006 3 2 498 26.7 2 507 17.7 2 514 27.7 99 -12 669 1 557 302 0.19 0.113 0 0.001 8 4.506 3 0.074 7 0.288 1 0.002 7 1 850 28.2 1 732 13.8 1 632 13.4 94 -13 917 724 471 0.65 0.167 6 0.002 6 9.853 7 0.161 7 0.424 3 0.003 5 2 600 24.8 2 421 15.1 2 280 16.0 93 -14 294 513 450 0.88 0.071 6 0.001 6 1.589 0 0.034 5 0.160 8 0.001 4 976 45.5 966 13.6 961 8.0 99 -15 373 682 511 0.75 0.076 8 0.001 5 1.786 2 0.034 2 0.169 4 0.002 0 1 117 38.9 1 040 12.5 1 009 11.2 96 -16 511 683 842 1.23 0.071 3 0.001 3 1.588 0 0.027 7 0.161 2 0.001 4 965 40.9 966 10.9 964 7.8 99 -17 604 1 086 846 0.78 0.075 0 0.001 3 1.843 8 0.032 5 0.177 6 0.001 6 1 133 33.8 1 061 11.6 1 054 8.5 99 -18 2435 3 396 1897 0.56 0.100 3 0.001 5 3.846 4 0.062 3 0.276 6 0.002 5 1 629 -171.3 1 603 13.1 1 574 12.5 98 -19 572 2 495 904 0.36 0.062 9 0.001 1 1.067 4 0.019 4 0.122 4 0.001 1 706 4.6 737 9.5 744 6.2 99 -20 243 831 220 0.27 0.075 6 0.001 4 1.898 8 0.034 7 0.181 6 0.001 9 1 087 35.6 1 081 12.2 1 076 10.3 99 -21 139 356 155 0.44 0.072 9 0.001 5 1.815 3 0.040 7 0.180 0 0.002 1 1 009 42.6 1 051 14.7 1 067 11.3 98 -22 437 2 174 334 0.15 0.072 7 0.001 1 1.622 7 0.024 4 0.161 0 0.001 2 1 006 29.6 979 9.5 962 6.8 98 -23 318 602 414 0.69 0.079 7 0.001 6 1.968 7 0.040 2 0.179 1 0.001 9 1 189 40.0 1 105 13.8 1 062 10.3 96 -24 488 1 109 564 0.51 0.078 5 0.001 4 2.042 3 0.038 4 0.188 1 0.002 1 1 161 35.2 1 130 12.8 1 111 11.3 98 -25 91 393 181 0.46 0.061 8 0.001 9 0.875 6 0.027 7 0.102 5 0.001 1 665 66.7 639 15.0 629 6.4 98 -26 159 448 316 0.70 0.063 1 0.001 6 1.058 0 0.025 0 0.121 9 0.001 2 722 53.7 733 12.3 742 7.0 98 -27 325 347 286 0.82 0.097 2 0.001 9 3.678 9 0.071 4 0.273 9 0.002 4 1 572 31.3 1 567 15.5 1 561 12.3 99 -28 271 608 372 0.61 0.075 2 0.001 3 1.687 4 0.029 4 0.162 2 0.001 3 1 072 33.8 1 004 11.1 969 7.3 96 -29 1419 2 131 1783 0.84 0.084 4 0.000 9 2.283 5 0.026 3 0.194 9 0.001 1 1 302 19.0 1 207 8.1 1 148 5.7 94 -30 119 137 157 1.15 0.080 7 0.002 2 2.167 8 0.055 3 0.195 8 0.002 2 1 217 58.3 1 171 17.7 1 153 11.9 98 -31 242 393 640 1.63 0.063 8 0.001 7 0.896 0 0.022 6 0.102 1 0.000 8 744 56.3 650 2.1 626 5.0 96 -32 137 203 123 0.60 0.098 6 0.002 0 3.351 7 0.066 5 0.246 5 0.002 2 1 598 37.0 1 493 15.5 1 421 11.6 95 -33 304 638 558 0.88 0.067 8 0.001 0 1.240 2 0.019 6 0.132 0 0.001 0 865 31.5 819 8.9 799 5.5 97 -34 398 2 173 143 0.07 0.080 2 0.000 6 1.973 9 0.016 9 0.177 5 0.000 9 1 267 14.8 1 107 5.8 1 054 5.0 95 -35 84 218 102 0.47 0.074 5 0.002 0 1.643 7 0.043 8 0.160 2 0.001 7 1 054 53.7 987 16.8 958 9.4 97 -36 1046 1 890 1446 0.76 0.075 8 0.000 6 1.668 4 0.015 6 0.158 7 0.001 0 1 100 15.6 997 5.9 950 5.5 95 -37 642 1 851 671 0.36 0.075 4 0.000 7 1.843 4 0.019 1 0.176 4 0.001 0 1 080 18.5 1 061 6.8 1 047 5.5 98 -38 119 689 168 0.24 0.064 1 0.001 2 0.958 8 0.019 9 0.108 0 0.001 1 746 40.7 683 10.3 661 6.3 96 -39 160 567 252 0.45 0.063 7 0.001 4 1.059 9 0.023 0 0.120 3 0.001 2 731 46.3 734 11.4 733 6.9 99 -40 200 147 306 2.08 0.077 7 0.002 4 2.037 3 0.061 7 0.191 4 0.002 6 1 139 61.6 1 128 20.6 1 129 14.1 99 -41 397 951 522 0.55 0.074 8 0.001 3 1.669 7 0.029 1 0.160 9 0.001 2 1 065 34.4 997 11.1 962 6.9 96 -42 158 332 218 0.66 0.074 4 0.001 9 1.657 5 0.043 2 0.161 1 0.001 8 1 054 51.1 992 16.5 963 10.0 96 -43 1221 1 710 637 0.37 0.136 0 0.002 8 6.331 2 0.154 7 0.336 1 0.004 6 2 177 35.2 2 023 21.4 1 868 22.0 92 -44 212 1 384 273 0.20 0.063 6 0.001 2 0.958 2 0.019 5 0.108 5 0.001 0 728 40.7 682 10.1 664 5.9 97 -45 149 262 228 0.87 0.072 9 0.001 9 1.471 5 0.038 1 0.147 0 0.002 3 1 009 47.2 919 15.7 884 12.7 96 -46 983 1 291 514 0.40 0.127 7 0.001 5 6.195 7 0.075 6 0.349 9 0.002 5 2 066 15.6 2 004 10.7 1 934 11.8 96 混合岩化片麻岩PM043-0-1 -1 39.9 115 41.1 0.36 0.069 5 0.003 0 1.404 7 0.065 0 0.146 4 0.002 8 922 82.4 891 27.4 880 15.7 98 -2 39.9 115 41.1 0.36 0.069 5 0.003 0 1.404 7 0.065 0 0.146 4 0.002 8 922 82.4 891 27.4 880 15.7 98 -4 728 759 451 0.59 0.102 7 0.001 8 3.927 8 0.072 3 0.276 0 0.002 1 1 673 32.6 1 619 14.9 1 571 10.6 96 -6 799 1 525 1 089 0.71 0.065 2 0.001 2 1.201 5 0.023 9 0.133 3 0.001 2 781 40 801 11 806 6.8 99 -8 224 649 325 0.5 0.061 5 0.001 4 0.876 6 0.021 8 0.103 1 0.001 4 655 48.1 639 11.8 633 8.1 98 -10 530 824 774 0.94 0.06 7 0.001 3 1.206 3 0.023 4 0.129 9 0.000 9 839 40.7 803 10.8 787 5 97 -13 194 178 127 0.71 0.100 4 0.002 2 3.947 3 0.088 5 0.284 0 0.002 5 1 631 40.9 1 623 18.2 1 612 12.7 99 -16 287 741 424 0.57 0.072 8 0.001 4 1.490 1 0.028 2 0.148 1 0.001 4 1 009 43.5 926 11.5 890 7.6 96 -18 1072 1 558 1 446 0.93 0.074 3 0.001 2 1.882 8 0.032 0 0.182 8 0.001 6 1 050 33.3 1075 11.3 1 082 8.6 99 -21 436 2 921 518 0.18 0.063 7 0.000 9 0.971 3 0.014 6 0.110 0 0.000 9 731 29.6 689 7.5 673 5.1 97 -24 136 931 280 0.3 0.063 8 0.001 6 0.813 3 0.022 7 0.091 7 0.001 3 744 51.8 604 12.7 566 7.9 93 -25 1036 1 858 1 479 0.8 0.076 3 0.001 4 1.731 3 0.030 9 0.163 8 0.001 4 1 102 37 1 020 11.5 978 7.6 95 -27 2040 3 133 718 0.23 0.155 2 0.002 0 8.338 5 0.115 3 0.386 3 0.003 0 2 406 22.2 2 269 12.5 2 106 14.1 92 -28 493 2 969 442 0.15 0.068 7 0.001 0 1.276 5 0.020 3 0.133 6 0.001 4 900 30.7 835 9.1 809 7.7 96 -29 361 769 507 0.66 0.071 9 0.001 4 1.624 7 0.033 3 0.162 4 0.001 7 983 45.4 980 12.9 970 9.7 99 -30 437 1 273 411 0.32 0.080 9 0.001 5 1.860 5 0.059 9 0.162 7 0.003 8 1 218 37.3 1 067 21.3 972 20.9 90 -31 278 267 384 1.44 0.077 5 0.002 2 2.045 9 0.054 5 0.191 5 0.002 2 1 144 54.5 1 131 18.2 1 129 11.7 99 -33 78.1 574 153 0.27 0.059 2 0.001 8 0.711 7 0.020 0 0.087 3 0.000 8 576 64.8 546 11.9 540 5 98 -40 317 1 020 170 0.17 0.088 1 0.001 6 2.867 5 0.063 2 0.234 0 0.002 9 1 384 33.8 1 373 16.6 1 355 15.4 98 -43 391 2 854 648 0.23 0.060 0 0.001 0 0.765 0 0.015 1 0.092 0 0.001 1 611 37 577 8.7 567 6.8 98 -44 248 995 489 0.49 0.066 4 0.001 4 0.961 2 0.026 0 0.103 7 0.001 7 820 46.3 684 13.4 636 9.7 92 -47 381 1 060 447 0.42 0.072 5 0.001 4 1.745 3 0.033 4 0.173 4 0.001 6 998 37.8 1 025 12.3 1 031 8.5 99 -52 385 3 188 491 0.15 0.057 9 0.001 0 0.705 0 0.013 9 0.087 7 0.001 0 528 32.4 542 8.3 542 5.7 99 -53 83.1 236 85.1 0.36 0.073 6 0.002 0 1.826 0 0.051 5 0.179 9 0.002 2 1 031 54.5 1 055 18.5 1 066 12 98 -56 666 371 489 1.32 0.118 1 0.002 0 5.924 3 0.103 1 0.362 7 0.003 0 1 928 30.4 1 965 15.1 1 995 14.3 98 -57 206 232 186 0.8 0.093 5 0.002 1 3.515 0 0.079 1 0.272 5 0.002 9 1 498 42.1 1 531 17.8 1 554 14.7 98 -59 331 1 216 448 0.37 0.067 6 0.001 2 1.298 8 0.025 2 0.138 6 0.0013 854 41.7 845 11.1 837 7.4 98 -62 232 538 305 0.57 0.069 2 0.001 4 1.606 6 0.031 4 0.167 8 0.001 5 906 40.7 973 12.2 1 000 8.5 97 -63 1131 4 581 1 051 0.23 0.076 5 0.001 2 1.571 4 0.056 5 0.144 5 0.004 0 1 107 31.5 959 22.3 870 22.7 90 -
[1] 刘飞, 杨经绥, 连东洋, 等. 西藏雅鲁藏布江缝合带西段南北亚带蛇绿岩的成因探讨[J]. 岩石学报, 2015, 31(12): 3609-3628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512008.htmLiu F, Yang J S, Lian D Y, et al. Geogenesis and characteristics of the western part of the Yarlung Zangbo ophiolites, Tibet[J]. Acta Petrologica Sinica, 2015, 31(12): 3609-3628(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512008.htm [2] 刘强, 邓玉彪, 向树元, 等. 藏南仲巴地体早奥陶世构造-热事件及其地质意义[J]. 地球科学, 2017, 42(6): 881-890. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201706003.htmLiu Q, Deng Y B, Xiang S Y, et al. Early Ordovician tectono-thermal event in Zhongba terrane and its geological significance[J]. Earth Science, 2017, 42(6): 881-890(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201706003.htm [3] Pullen A, Kapp P, DeCelles P G, et al. Cenozoic anatexis and exhumation of Tethyan sequence rocks in the Xiao Gurla Range, Southwest Tibet[J]. Tectonophysics, 2011, 501(1/4): 28-40. [4] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 [5] Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018 [6] Deng J, Wang Q, Li G, et al. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 2014, 26(2): 419-437. doi: 10.1016/j.gr.2013.08.002 [7] Hébert R, Bezard R, Guilmette C, et al. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys[J]. Gondwana Research, 2012, 22(2): 377-397. doi: 10.1016/j.gr.2011.10.013 [8] Dubois-Côté V, Hébert R, Dupuis C, et al. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet[J]. Chemical Geology, 2005, 214(3): 265-286. [9] 莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606007.htmMo X X, Pan G T. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectono-magmatic eevents[J]. Geoscience Frontiers, 2006, 13(6): 45-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606007.htm [10] 许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 2006, 33(2): 221-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602001.htmXu Z Q, Yang J S, Li H B, et al. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China, 2006, 33(2): 221-238(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602001.htm [11] Liu Q, Liu F, Li H, et al. Remnants of middle Triassic oceanic lithosphere in the western Indus-Tsangpo suture zone, southwestern Tibet[J]. Terra Nova, 2021, 33(2): 109-119. doi: 10.1111/ter.12495 [12] 吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩: 事实与臆想[J]. 岩石学报, 2014, 30(2): 293-325. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402001.htmWu F Y, Liu C Z, Zhang L L, et al. Yarlung Zangbo ophiolites: A critical updated view[J]. Acta Petrologica Sinica, 2014, 30(2): 293-325(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402001.htm [13] 潘桂棠, 陈智梁, 李兴振, 等. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997.Pan G T, Chen Z L, Li X Z, et al. Geological-teological-tectonic evolution in the eastem Testem Tethys[M]. Beijing: Geological Publishing House, 1997(in Chinese). [14] 李源, 杨经绥, 刘钊, 等. 西藏雅鲁藏布江缝合带西段巴尔地幔橄榄岩成因及构造意义[J]. 岩石学报, 2011, 27(11): 3239-3254. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111007.htmLi Y, Yang J S, Liu Z, et al. The origins of Baer ophiolitic peridotite and its implication in the Yarlung Zangbo suture zone, southern Tibet[J]. Acta Petrologica Sinica, 2011, 27(11): 3239-3254(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111007.htm [15] 张万平, 袁四化, 刘伟. 青藏高原南部雅鲁藏布江蛇绿岩带的时空分布特征及地质意义[J]. 西北地质, 2011, 44(1): 1-9. doi: 10.3969/j.issn.1009-6248.2011.01.001Zhang W P, Yuan S H, Liu W, et al. Distribution andresearch significance of ophiolite in Brahmaputra Suture Zone, Southern Tibet[J]. North Western Geology, 2011, 44(1): 1-9(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2011.01.001 [16] 孙东, 王道永. 雅鲁藏布江缝合带中段构造特征及成因模式新见解[J]. 地质学报, 2011, 85(1): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101003.htmSun D, Wang D Y. Structure features of the Middle Yarlung Zangbo Suture Zone and a new knowledge of its genetic model[J]. Acta Geologica Sinica, 2011, 85(1): 56-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101003.htm [17] 刘飞, 杨经绥, 陈松永, 等. 雅鲁藏布江缝合带西段基性岩地球化学和Sr-Nd-Pb同位素特征: 新特提斯洋内俯冲的证据[J]. 中国地质, 2013, 40(3): 742-755. doi: 10.3969/j.issn.1000-3657.2013.03.007Liu F, Yang J S, Chen S Y, et al. Geochemistry and Sr-Nd-Pb isotopic composition of mafic rocks in the western part of Yarlung Zangbo suture zone: Evidence for intra-oceanic supra-subduction within the Neo-Tethys[J]. Geology in China, 2013, 40(3): 742-755(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2013.03.007 [18] 李祥辉, 王成善, 李亚林, 等. 仲巴微地体之定义及构成[J]. 地质学报, 2014, 88(8): 1372-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408002.htmLi X H, Wang C S, Li Y L, et al. Definition and composition of the Zhongba Microterrane in Southwest Tibet[J]. Acta Geologica Sinica, 2014, 88(8): 1372-1381(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408002.htm [19] 多吉, 温春齐, 郭建慈, 等. 西藏4.1Ga碎屑锆石年龄的发现[J]. 科学通报, 2007, 52(1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200701002.htmDuo J, Wen C Q, Guo J C, et al. 4.1 Ga old detrital zircon in western Tibet of China[J]. Chinese Science Bulletin, 2007, 52(1): 19-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200701002.htm [20] 孙高远, 胡修棉. 仲巴地体的板块亲缘性: 来自碎屑锆石U-Pb年代学和Hf同位素的证据[J]. 岩石学报, 2012, 28(5): 1635-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205026.htmSun G Y, Hu X M. Tectonic affinity of Zhongba terrane: Evidences from the detrital zircon geochronology and Hf isotopes[J]. Acta Petrologica Sinica, 2012, 28(5): 1635-1646(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205026.htm [21] 刘峰, 周峰, 刘强, 等. 藏南仲巴地体中段构造变形特征及构造演化分析[J]. 大地构造与成矿学, 2019, 43(5): 859-871. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201905001.htmLiu F, Zhou F, Liu Q, et al. Structural characteristics in the middle of the Zhongba terrane, Southern Tibet and its tectonic evolution[J]. Geotectonica et Metallogenia, 2019, 43(5): 859-871(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201905001.htm [22] He J, Li Y, Wang C, et al. Plume-proximal mid-ocean ridge origin of Zhongba mafic rocks in the western Yarlung Zangbo Suture Zone, Southern Tibet[J]. Journal of Asian Earth Sciences, 2016, 121: 34-55. [23] He Z Y, Xu X S, Yu Y, et al. Origin of the Late Cretaceous syenite from Yandangshan, SE China, constrained by zircon U-Pb and Hf isotopes and geochemical data[J]. International Geology Review, 2009, 51(6): 556-582. [24] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2): 47-69. [25] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2009, 51(1/2): 537-571. [26] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. [27] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and traceelements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. [28] Ludwig K. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel, Kenneth[R]. Berkeley: Berkeley Geochronology Centre, 2003. [29] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. [30] Shaw D M. Theorigin of the Apsley gneiss, Ontario[J]. Canadian Journal of Earth Sciences, 1972, 9(1): 18-35. [31] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299: 715-717. [32] 胡恭任, 刘丛强, 章邦桐, 等. 赣中变质岩带的岩石学特征及原岩恢复[J]. 江西地质, 1999, 13(3): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ199903000.htmHu G R, Liu C Q, Zhang B T, et al. Petrological features of the central Jiangxi metamorphic belt and restoration of protolith[J]. Jiangxi Geology, 1999, 13(3): 3-5(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ199903000.htm [33] 王仁民, 贺高品, 陈珍珍, 等. 变质岩原岩图解判别法[M]. 北京: 地质出版社, 1987.Wang R M, He G P, Chen Z Z, et al. Graphicmethod for protolith metamorphic rocks[M]. Beijing: Geological Publishing House, 1987(in Chinese). [34] 时国, 郭福生, 谢财富, 等. 赣中相山铀矿田基底变质岩原岩恢复及其形成环境[J]. 中国地质, 2015, 42(2): 457-468. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201502007.htmShi G, Guo F S, Xie C F, et al. Protoliths reconstruction and formation conditions of basement metamorphic rocks in the Xiangshan uranium orefield, Central Jiangxi[J]. Geology in China, 2015, 42(2): 457-468(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201502007.htm [35] Girty G, Ridge D, Knaack C, et al. Provenance anddepositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66: 107-118. [36] Jewell P W, Stallard R F. Geochemistry andpaleoceanographic setting of Central Nevada Bedded Barites[J]. The Journal of Geology, 1991, 99(2): 151-170. [37] Murray R W, Buchholtz ten Brink M R, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology, 1990, 18(3): 268-271. [38] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. [39] 张泽明, 王金丽, 沈昆, 等. 环东冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J]. 岩石学报, 2008, 24(7): 1627-1637. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807020.htmZhang Z M, Wang J L, Shen K, et al. Paleozoic circum-Gondwana orogens: Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet[J]. Acta Petrologica Sinica, 2008, 24(7): 1627-1637(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807020.htm [40] Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 70-84. [41] 张振利, 专少鹏, 李广栋, 等. 藏南仲巴地层分区才巴弄组变质玄武质火山岩的发现及其意义[J]. 地质通报, 2007, 26(4): 410-416. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200704005.htmZhang Z L, Zhuan S P, Li G D, et al. Discovery of metabasaltic rocks in the Caibalong Formation in the Zhongba stratigraphic area, southern Tibet, China and their significance[J]. Geological Bulletin of China, 2007, 26(4): 410-416(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200704005.htm [42] 林超, 张进江, 黄天立, 等. 仲巴微地体的构造亲缘性: 来自藏南马攸木地区志留系-石炭系碎屑锆石年代学的制约[J]. 地质科学, 2020, 55(2): 574-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202002017.htmLin C, Zhang J J, Huang T L, et al. Tectonic affinity of Zhongba microterrane: Constraint from detrital zircon geochronoIogy of the SiIurian-Carboniferous strata in the Mayum region, southern Tibet[J]. Chinese Journal of Geology, 2020, 55(2): 574-597(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202002017.htm [43] Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730. [44] Pullen A, Kapp P, Gehrels G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 2008, 36(5): 351-354. [45] 董春艳, 李才, 万渝生, 等. 西藏羌塘龙木错-双湖缝合带南侧奥陶纪温泉石英岩碎屑锆石年龄分布模式: 构造归属及物源区制约[J]. 中国科学: 地球科学, 2011, 41(3): 299-308. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103003.htmDong C Y, Li C, Wan Y S, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: Constraint on tectonic affinity and source regions[J]. Science China: Earth Science, 2011, 41(3): 299-308(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103003.htm [46] McQuarrie N, Robinson D, Long S, et al. Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system[J]. Earth and Planetary Science Letters, 2008, 272(1): 105-117. [47] Myrow P, Hughes N, Goodge J, et al. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician[J]. Geological Society of America Bulletin, 2010, 122: 1660-1670. [48] Myrow P M, Hughes N C, Searle M P, et al. Stratigraphic correlation of Cambrian-Ordovician deposits along the Himalaya: Implications for the age and nature of rocks in the Mount Everest region[J]. GSA Bulletin, 2009, 121(3/4): 323-332. [49] Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya[J]. GSA Bulletin, 2006, 118(1/2): 185-198. [50] Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrustsheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 2006, 28(4): 385-408. [51] Leier A L, Kapp P, Gehrels G E, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet[J]. Basin Research, 2007, 19(3): 361-378. [52] 侯云岭. 西藏南部仲巴微地体构造属性分析: 来自碎屑锆石U-Pb年代学的证据[D]. 北京: 中国地质大学(北京), 2015.Hou Y L. Tectonic property research on Zhongba microterrane, southern Tibet: Evidences from detrital zircon U-Pb geochronology[D]. Beijing: China University of Geosciences(Beijing), 2015(in Chinese with English abstract). -